优化支架的设计,开发和特性,以促进组织修复的细胞增殖。

IF 3 4区 医学 Q2 CHEMISTRY, APPLIED Journal of microencapsulation Pub Date : 2023-03-01 DOI:10.1080/02652048.2023.2175922
Subodh Kumar, Chanakya Lahiri, Somya Chaaudhary, Prateek Paul, Yogesh Kumar Verma
{"title":"优化支架的设计,开发和特性,以促进组织修复的细胞增殖。","authors":"Subodh Kumar,&nbsp;Chanakya Lahiri,&nbsp;Somya Chaaudhary,&nbsp;Prateek Paul,&nbsp;Yogesh Kumar Verma","doi":"10.1080/02652048.2023.2175922","DOIUrl":null,"url":null,"abstract":"<p><p>Scaffolds are implanted to spur the regeneration of damaged tissues. The inappropriate construction of scaffolds laden with cells is not efficient. The optimisation of the scaffolds' constituents is essential for tissue repair. In this study, a scaffold embedded with Raloxifene drug was optimised via Response Surface Methodology (RSM), targeting controlled cell proliferation. The independent variables for RSM (fibronectin, collagen I, glutaraldehyde, and Raloxifene) were screened in Swiss target prediction software (probability ≥99%) to optimise dependent variables (porosity, cell viability, degradation, and swelling) by ANOVA and characterised with FTIR, SEM and contact angle measurement. The scaffold was tested for antimicrobial property, and proliferation and attachment of mouse mesenchymal stem cells. The ANOVA analysis with <i>p</i> value ≤ 0.0001 suggested the optimal concentration of biomaterials and drugs. The optimised scaffold displayed 80% porosity with pore size 33 ± 3 µm. We also observed significant cell attachment and proliferation (<i>p</i> value ≤ 0.05) in optimised scaffold. The scaffold may be further evaluated for its potential for tissue repair.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":"40 2","pages":"82-97"},"PeriodicalIF":3.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, development and characterisation of an optimised scaffold to enhance cell proliferation for tissue repair.\",\"authors\":\"Subodh Kumar,&nbsp;Chanakya Lahiri,&nbsp;Somya Chaaudhary,&nbsp;Prateek Paul,&nbsp;Yogesh Kumar Verma\",\"doi\":\"10.1080/02652048.2023.2175922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Scaffolds are implanted to spur the regeneration of damaged tissues. The inappropriate construction of scaffolds laden with cells is not efficient. The optimisation of the scaffolds' constituents is essential for tissue repair. In this study, a scaffold embedded with Raloxifene drug was optimised via Response Surface Methodology (RSM), targeting controlled cell proliferation. The independent variables for RSM (fibronectin, collagen I, glutaraldehyde, and Raloxifene) were screened in Swiss target prediction software (probability ≥99%) to optimise dependent variables (porosity, cell viability, degradation, and swelling) by ANOVA and characterised with FTIR, SEM and contact angle measurement. The scaffold was tested for antimicrobial property, and proliferation and attachment of mouse mesenchymal stem cells. The ANOVA analysis with <i>p</i> value ≤ 0.0001 suggested the optimal concentration of biomaterials and drugs. The optimised scaffold displayed 80% porosity with pore size 33 ± 3 µm. We also observed significant cell attachment and proliferation (<i>p</i> value ≤ 0.05) in optimised scaffold. The scaffold may be further evaluated for its potential for tissue repair.</p>\",\"PeriodicalId\":16391,\"journal\":{\"name\":\"Journal of microencapsulation\",\"volume\":\"40 2\",\"pages\":\"82-97\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microencapsulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02652048.2023.2175922\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2023.2175922","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

植入支架来刺激受损组织的再生。不适当的细胞支架结构是没有效率的。支架成分的优化对组织修复至关重要。在本研究中,通过响应面法(Response Surface Methodology, RSM)优化了雷洛昔芬药物包埋支架,以控制细胞增殖。RSM的自变量(纤维连接蛋白、ⅰ型胶原、戊二醛和雷洛昔芬)在瑞士靶标预测软件中筛选(概率≥99%),通过方差分析优化因变量(孔隙度、细胞活力、降解和肿胀),并用FTIR、SEM和接触角测量进行表征。对该支架进行了抗菌性能和小鼠间充质干细胞的增殖和附着试验。p值≤0.0001的方差分析提示生物材料和药物的最佳浓度。优化后的支架孔隙率为80%,孔径为33±3µm。我们还观察到优化后的支架有显著的细胞附着和增殖(p值≤0.05)。该支架的组织修复潜力有待进一步评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design, development and characterisation of an optimised scaffold to enhance cell proliferation for tissue repair.

Scaffolds are implanted to spur the regeneration of damaged tissues. The inappropriate construction of scaffolds laden with cells is not efficient. The optimisation of the scaffolds' constituents is essential for tissue repair. In this study, a scaffold embedded with Raloxifene drug was optimised via Response Surface Methodology (RSM), targeting controlled cell proliferation. The independent variables for RSM (fibronectin, collagen I, glutaraldehyde, and Raloxifene) were screened in Swiss target prediction software (probability ≥99%) to optimise dependent variables (porosity, cell viability, degradation, and swelling) by ANOVA and characterised with FTIR, SEM and contact angle measurement. The scaffold was tested for antimicrobial property, and proliferation and attachment of mouse mesenchymal stem cells. The ANOVA analysis with p value ≤ 0.0001 suggested the optimal concentration of biomaterials and drugs. The optimised scaffold displayed 80% porosity with pore size 33 ± 3 µm. We also observed significant cell attachment and proliferation (p value ≤ 0.05) in optimised scaffold. The scaffold may be further evaluated for its potential for tissue repair.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of microencapsulation
Journal of microencapsulation 工程技术-工程:化工
CiteScore
6.30
自引率
2.60%
发文量
39
审稿时长
3 months
期刊介绍: The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation. The journal covers: Chemistry of encapsulation materials Physics of release through the capsule wall and/or desorption from carrier Techniques of preparation, content and storage Many uses to which microcapsules are put.
期刊最新文献
Leflunomide nanocarriers: a new prospect of therapeutic applications. Biodegradable polymeric nanocomposite containing phloretin for enhanced oral bioavailability and improved myocardial ischaemic recovery. Effect of poly(ε-caprolactone) microspheres on population pharmacokinetic/pharmacodynamic model of a simple coumarin. Advancements in microneedle technology: current status and next-generation innovations. A comparative analysis of PLA and PCL microparticles for hydrophilic and hydrophobic drugs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1