{"title":"基于单细胞RNA测序分析的骨关节炎免疫治疗免疫相关生物标志物鉴定。","authors":"Zhe Tan, Rong Chen, Hanyu Lin, Hong Wang","doi":"10.1155/2023/5574636","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) is a chronic musculoskeletal disease affecting approximately 500 million people worldwide. Globally, OA is one of the most common and leading causes of disability. Several genetic factors are involved in OA, including inherited genes, genetic susceptibility, and genetic predisposition. As the pathogenesis of OA is unknown, there are almost no effective treatments available to prevent the onset or progression of the disease. In recent years, many researchers focused on bioinformatics analysis to explore new biomarkers for the diagnosis, treatment, and prognosis of human diseases. In this work, we obtain the traditional RNA sequencing data of OA patients from the GEO database. By performing the differentially expressed analysis, we successfully obtain the genes that are closely associated with the OA. In addition, the Venn diagram was applied to evaluate the genes that are involved in OA and immune-related genes. The protein-protein interaction analysis was further conducted to explore the hub genes. The single-cell RNA sequencing analysis was used to evaluate the expression distribution of the MMP, VEGFA, SPI1, and IRF8 in synovial tissues of patients with osteoarthritis. Finally, the GSVA enrichment analysis discovered the potential pathways involved in OA patients. Our analysis provides a new direction for the exploration of the process of OA patients. In addition, VEGFA may be considered a promising biomarker in OA.</p>","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":"2023 ","pages":"5574636"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030227/pdf/","citationCount":"1","resultStr":"{\"title\":\"The Identification of Immune-Related Biomarkers for Osteoarthritis Immunotherapy Based on Single-Cell RNA Sequencing Analysis.\",\"authors\":\"Zhe Tan, Rong Chen, Hanyu Lin, Hong Wang\",\"doi\":\"10.1155/2023/5574636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteoarthritis (OA) is a chronic musculoskeletal disease affecting approximately 500 million people worldwide. Globally, OA is one of the most common and leading causes of disability. Several genetic factors are involved in OA, including inherited genes, genetic susceptibility, and genetic predisposition. As the pathogenesis of OA is unknown, there are almost no effective treatments available to prevent the onset or progression of the disease. In recent years, many researchers focused on bioinformatics analysis to explore new biomarkers for the diagnosis, treatment, and prognosis of human diseases. In this work, we obtain the traditional RNA sequencing data of OA patients from the GEO database. By performing the differentially expressed analysis, we successfully obtain the genes that are closely associated with the OA. In addition, the Venn diagram was applied to evaluate the genes that are involved in OA and immune-related genes. The protein-protein interaction analysis was further conducted to explore the hub genes. The single-cell RNA sequencing analysis was used to evaluate the expression distribution of the MMP, VEGFA, SPI1, and IRF8 in synovial tissues of patients with osteoarthritis. Finally, the GSVA enrichment analysis discovered the potential pathways involved in OA patients. Our analysis provides a new direction for the exploration of the process of OA patients. In addition, VEGFA may be considered a promising biomarker in OA.</p>\",\"PeriodicalId\":12778,\"journal\":{\"name\":\"Genetics research\",\"volume\":\"2023 \",\"pages\":\"5574636\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030227/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5574636\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2023/5574636","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The Identification of Immune-Related Biomarkers for Osteoarthritis Immunotherapy Based on Single-Cell RNA Sequencing Analysis.
Osteoarthritis (OA) is a chronic musculoskeletal disease affecting approximately 500 million people worldwide. Globally, OA is one of the most common and leading causes of disability. Several genetic factors are involved in OA, including inherited genes, genetic susceptibility, and genetic predisposition. As the pathogenesis of OA is unknown, there are almost no effective treatments available to prevent the onset or progression of the disease. In recent years, many researchers focused on bioinformatics analysis to explore new biomarkers for the diagnosis, treatment, and prognosis of human diseases. In this work, we obtain the traditional RNA sequencing data of OA patients from the GEO database. By performing the differentially expressed analysis, we successfully obtain the genes that are closely associated with the OA. In addition, the Venn diagram was applied to evaluate the genes that are involved in OA and immune-related genes. The protein-protein interaction analysis was further conducted to explore the hub genes. The single-cell RNA sequencing analysis was used to evaluate the expression distribution of the MMP, VEGFA, SPI1, and IRF8 in synovial tissues of patients with osteoarthritis. Finally, the GSVA enrichment analysis discovered the potential pathways involved in OA patients. Our analysis provides a new direction for the exploration of the process of OA patients. In addition, VEGFA may be considered a promising biomarker in OA.
期刊介绍:
Genetics Research is a key forum for original research on all aspects of human and animal genetics, reporting key findings on genomes, genes, mutations and molecular interactions, extending out to developmental, evolutionary, and population genetics as well as ethical, legal and social aspects. Our aim is to lead to a better understanding of genetic processes in health and disease. The journal focuses on the use of new technologies, such as next generation sequencing together with bioinformatics analysis, to produce increasingly detailed views of how genes function in tissues and how these genes perform, individually or collectively, in normal development and disease aetiology. The journal publishes original work, review articles, short papers, computational studies, and novel methods and techniques in research covering humans and well-established genetic organisms. Key subject areas include medical genetics, genomics, human evolutionary and population genetics, bioinformatics, genetics of complex traits, molecular and developmental genetics, Evo-Devo, quantitative and statistical genetics, behavioural genetics and environmental genetics. The breadth and quality of research make the journal an invaluable resource for medical geneticists, molecular biologists, bioinformaticians and researchers involved in genetic basis of diseases, evolutionary and developmental studies.