{"title":"基于唾液酸修饰的纳米平台阻断中性粒细胞募集到肿瘤部位,增强了检查点阻断免疫治疗的疗效","authors":"Meng Chen, Zhaowei Qi, Xianmin Meng, Shuo Wang, Xueying Zheng, Miao Hu, Xinrong Liu, Yanzhi Song, Yihui Deng","doi":"10.1016/j.ajps.2023.100784","DOIUrl":null,"url":null,"abstract":"<div><p>Checkpoint inhibitors are designed to rejuvenate depleted or suppressed T cells in the tumor microenvironment, relying on the immune system to control and kill tumors. However, accumulating evidence indicates that tumor-infiltrating neutrophils impede the proliferation and activation of T cells and determine the resistance to checkpoint blockade and chemotherapy. In this study, sialic acid ligand-modified colchicine derivative phospholipid complexes specifically targeted tumor-associated neutrophils in the peripheral blood, blocked neutrophil accumulation in tumors, and attenuated the inhibitory effect of infiltrating neutrophils on T cells. Neutrophil blocking therapy enhanced the immunotherapy effect of the PD-L1 antibody in S180 advanced tumors and 4T1 breast cancer. Our study found that PD-L1 antibody monotherapy increased the tumor infiltration of immunosuppressive neutrophils. Combination therapy with neutrophil blocking can greatly reduce tumor-infiltrating neutrophils and increase the proliferation of cytotoxic CD8<sup>+</sup> T lymphocytes in the tumor. The combination therapy significantly improved the survival rate of mice with advanced S180 tumors and increased the sensitivity of immune checkpoint inhibitors to 4T1 cold tumors.</p></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"18 2","pages":"Article 100784"},"PeriodicalIF":10.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1e/c8/main.PMC10034569.pdf","citationCount":"0","resultStr":"{\"title\":\"Blockade of neutrophil recruitment to tumor sites based on sialic acid-modified nanoplatforms enhances the efficacy of checkpoint blockade immunotherapy\",\"authors\":\"Meng Chen, Zhaowei Qi, Xianmin Meng, Shuo Wang, Xueying Zheng, Miao Hu, Xinrong Liu, Yanzhi Song, Yihui Deng\",\"doi\":\"10.1016/j.ajps.2023.100784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Checkpoint inhibitors are designed to rejuvenate depleted or suppressed T cells in the tumor microenvironment, relying on the immune system to control and kill tumors. However, accumulating evidence indicates that tumor-infiltrating neutrophils impede the proliferation and activation of T cells and determine the resistance to checkpoint blockade and chemotherapy. In this study, sialic acid ligand-modified colchicine derivative phospholipid complexes specifically targeted tumor-associated neutrophils in the peripheral blood, blocked neutrophil accumulation in tumors, and attenuated the inhibitory effect of infiltrating neutrophils on T cells. Neutrophil blocking therapy enhanced the immunotherapy effect of the PD-L1 antibody in S180 advanced tumors and 4T1 breast cancer. Our study found that PD-L1 antibody monotherapy increased the tumor infiltration of immunosuppressive neutrophils. Combination therapy with neutrophil blocking can greatly reduce tumor-infiltrating neutrophils and increase the proliferation of cytotoxic CD8<sup>+</sup> T lymphocytes in the tumor. The combination therapy significantly improved the survival rate of mice with advanced S180 tumors and increased the sensitivity of immune checkpoint inhibitors to 4T1 cold tumors.</p></div>\",\"PeriodicalId\":8539,\"journal\":{\"name\":\"Asian Journal of Pharmaceutical Sciences\",\"volume\":\"18 2\",\"pages\":\"Article 100784\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1e/c8/main.PMC10034569.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1818087623000119\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1818087623000119","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Blockade of neutrophil recruitment to tumor sites based on sialic acid-modified nanoplatforms enhances the efficacy of checkpoint blockade immunotherapy
Checkpoint inhibitors are designed to rejuvenate depleted or suppressed T cells in the tumor microenvironment, relying on the immune system to control and kill tumors. However, accumulating evidence indicates that tumor-infiltrating neutrophils impede the proliferation and activation of T cells and determine the resistance to checkpoint blockade and chemotherapy. In this study, sialic acid ligand-modified colchicine derivative phospholipid complexes specifically targeted tumor-associated neutrophils in the peripheral blood, blocked neutrophil accumulation in tumors, and attenuated the inhibitory effect of infiltrating neutrophils on T cells. Neutrophil blocking therapy enhanced the immunotherapy effect of the PD-L1 antibody in S180 advanced tumors and 4T1 breast cancer. Our study found that PD-L1 antibody monotherapy increased the tumor infiltration of immunosuppressive neutrophils. Combination therapy with neutrophil blocking can greatly reduce tumor-infiltrating neutrophils and increase the proliferation of cytotoxic CD8+ T lymphocytes in the tumor. The combination therapy significantly improved the survival rate of mice with advanced S180 tumors and increased the sensitivity of immune checkpoint inhibitors to 4T1 cold tumors.
期刊介绍:
The Asian Journal of Pharmaceutical Sciences (AJPS) serves as the official journal of the Asian Federation for Pharmaceutical Sciences (AFPS). Recognized by the Science Citation Index Expanded (SCIE), AJPS offers a platform for the reporting of advancements, production methodologies, technologies, initiatives, and the practical application of scientific knowledge in the field of pharmaceutics. The journal covers a wide range of topics including but not limited to controlled drug release systems, drug targeting, physical pharmacy, pharmacodynamics, pharmacokinetics, pharmacogenomics, biopharmaceutics, drug and prodrug design, pharmaceutical analysis, drug stability, quality control, pharmaceutical engineering, and material sciences.