{"title":"猎人角海军造船厂(HPNS)的辐射风险评估。","authors":"Dennis J Paustenbach, Robert D Gibbons","doi":"10.1080/10408444.2022.2118107","DOIUrl":null,"url":null,"abstract":"<p><p>Hunters Point Naval Shipyard in San Francisco, California was deemed a Superfund site by the USEPA in 1989 due to chemical and radiological contamination resulting from U.S. Navy operations from 1939 to 1974. During characterization and remediation efforts, over 50,000 radiological soil samples and 19,000 air samples were collected. This risk assessment, conducted in accordance with federal guidelines, represents the first comprehensive evaluation of past, present, and future health risks associated with radionuclides present at the site. The assessment indicated that before site remediation, most radionuclide soil concentrations were at or near local background concentrations. Had such low remedial goals not been established, significant remediation of surface soils would not have been necessary to protect human health. The pre-remediation lifetime incremental cancer morbidity risks for on-site workers and theoretical on-site residents due to radionuclide contamination were found to be 1.3 × 10<sup>-6</sup> and 3.2 × 10<sup>-6</sup>, respectively. The post-remediation risks to future on-site residents were found to be 6.3 × 10<sup>-8</sup> (without durable cover) and 3.7 × 10<sup>-8</sup> (with durable cover), while post-remediation risks to on-site workers were found to be 2.6 × 10<sup>-8</sup> (without durable cover) and 1.6 × 10<sup>-8</sup> (with durable cover). Risk estimates for all scenarios were found to be significantly below the acceptable risk of 3 × 10<sup>-4</sup> approved by regulatory agencies. Upwind and downwind air samples collected during remediation indicate that remediation activities never posed a measurable risk to off-site residents. This risk assessment emphasizes the importance of establishing clear and scientifically rigorous soil remedial goals at sites as well as understanding local radionuclide background concentrations.</p>","PeriodicalId":10869,"journal":{"name":"Critical Reviews in Toxicology","volume":"52 7","pages":"499-545"},"PeriodicalIF":5.7000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiological risk assessment of the Hunters Point Naval Shipyard (HPNS).\",\"authors\":\"Dennis J Paustenbach, Robert D Gibbons\",\"doi\":\"10.1080/10408444.2022.2118107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hunters Point Naval Shipyard in San Francisco, California was deemed a Superfund site by the USEPA in 1989 due to chemical and radiological contamination resulting from U.S. Navy operations from 1939 to 1974. During characterization and remediation efforts, over 50,000 radiological soil samples and 19,000 air samples were collected. This risk assessment, conducted in accordance with federal guidelines, represents the first comprehensive evaluation of past, present, and future health risks associated with radionuclides present at the site. The assessment indicated that before site remediation, most radionuclide soil concentrations were at or near local background concentrations. Had such low remedial goals not been established, significant remediation of surface soils would not have been necessary to protect human health. The pre-remediation lifetime incremental cancer morbidity risks for on-site workers and theoretical on-site residents due to radionuclide contamination were found to be 1.3 × 10<sup>-6</sup> and 3.2 × 10<sup>-6</sup>, respectively. The post-remediation risks to future on-site residents were found to be 6.3 × 10<sup>-8</sup> (without durable cover) and 3.7 × 10<sup>-8</sup> (with durable cover), while post-remediation risks to on-site workers were found to be 2.6 × 10<sup>-8</sup> (without durable cover) and 1.6 × 10<sup>-8</sup> (with durable cover). Risk estimates for all scenarios were found to be significantly below the acceptable risk of 3 × 10<sup>-4</sup> approved by regulatory agencies. Upwind and downwind air samples collected during remediation indicate that remediation activities never posed a measurable risk to off-site residents. This risk assessment emphasizes the importance of establishing clear and scientifically rigorous soil remedial goals at sites as well as understanding local radionuclide background concentrations.</p>\",\"PeriodicalId\":10869,\"journal\":{\"name\":\"Critical Reviews in Toxicology\",\"volume\":\"52 7\",\"pages\":\"499-545\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10408444.2022.2118107\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10408444.2022.2118107","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Radiological risk assessment of the Hunters Point Naval Shipyard (HPNS).
Hunters Point Naval Shipyard in San Francisco, California was deemed a Superfund site by the USEPA in 1989 due to chemical and radiological contamination resulting from U.S. Navy operations from 1939 to 1974. During characterization and remediation efforts, over 50,000 radiological soil samples and 19,000 air samples were collected. This risk assessment, conducted in accordance with federal guidelines, represents the first comprehensive evaluation of past, present, and future health risks associated with radionuclides present at the site. The assessment indicated that before site remediation, most radionuclide soil concentrations were at or near local background concentrations. Had such low remedial goals not been established, significant remediation of surface soils would not have been necessary to protect human health. The pre-remediation lifetime incremental cancer morbidity risks for on-site workers and theoretical on-site residents due to radionuclide contamination were found to be 1.3 × 10-6 and 3.2 × 10-6, respectively. The post-remediation risks to future on-site residents were found to be 6.3 × 10-8 (without durable cover) and 3.7 × 10-8 (with durable cover), while post-remediation risks to on-site workers were found to be 2.6 × 10-8 (without durable cover) and 1.6 × 10-8 (with durable cover). Risk estimates for all scenarios were found to be significantly below the acceptable risk of 3 × 10-4 approved by regulatory agencies. Upwind and downwind air samples collected during remediation indicate that remediation activities never posed a measurable risk to off-site residents. This risk assessment emphasizes the importance of establishing clear and scientifically rigorous soil remedial goals at sites as well as understanding local radionuclide background concentrations.
期刊介绍:
Critical Reviews in Toxicology provides up-to-date, objective analyses of topics related to the mechanisms of action, responses, and assessment of health risks due to toxicant exposure. The journal publishes critical, comprehensive reviews of research findings in toxicology and the application of toxicological information in assessing human health hazards and risks. Toxicants of concern include commodity and specialty chemicals such as formaldehyde, acrylonitrile, and pesticides; pharmaceutical agents of all types; consumer products such as macronutrients and food additives; environmental agents such as ambient ozone; and occupational exposures such as asbestos and benzene.