基于磁珠往复运动的血液粘弹性监测新方法的研制与验证。

IF 1.3 4区 医学 Q4 ENGINEERING, BIOMEDICAL Biomedical Engineering / Biomedizinische Technik Pub Date : 2023-04-25 DOI:10.1515/bmt-2022-0225
Xinyu Du, Fupan Chen, Lijin Gan, Yong Liu, Yu Zheng, Linghua Xing, Qi Zhou
{"title":"基于磁珠往复运动的血液粘弹性监测新方法的研制与验证。","authors":"Xinyu Du,&nbsp;Fupan Chen,&nbsp;Lijin Gan,&nbsp;Yong Liu,&nbsp;Yu Zheng,&nbsp;Linghua Xing,&nbsp;Qi Zhou","doi":"10.1515/bmt-2022-0225","DOIUrl":null,"url":null,"abstract":"<p><p>Blood coagulation function is an essential index in clinical examination, and it is of great significance to evaluate blood coagulation function comprehensively. Based on the blood viscoelasticity theory and hydrodynamics, we proposed a method to monitor the whole blood coagulation process based on the reciprocating motion of the magnetic bead (magnetic bead method for short). We have established a mathematical model between the moment acting on the magnetic bead and the viscoelasticity of blood in the process of blood coagulation. The change of blood viscoelasticity acks on the magnetic bead in the form of moment changes, which shows that the amplitude of the motion of the magnetic bead varies with the change of blood viscoelasticity. Designed and verified a blood coagulation monitoring device based on the reciprocating movement of the magnetic bead and discussed the device's parameters through the orthogonal experiment. Lastly, the TEG5000 was used as the control group to test the thromboelasticity of four groups of thromboelastography quality control products in the same batch and 10 groups of human whole blood. It verified that our device has good repeatability, and has good consistency with TEG5000, it has particular application potential as a new blood coagulation monitoring method.</p>","PeriodicalId":8900,"journal":{"name":"Biomedical Engineering / Biomedizinische Technik","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and verification of a novel blood viscoelastic monitoring method based on reciprocating motion of magnetic bead.\",\"authors\":\"Xinyu Du,&nbsp;Fupan Chen,&nbsp;Lijin Gan,&nbsp;Yong Liu,&nbsp;Yu Zheng,&nbsp;Linghua Xing,&nbsp;Qi Zhou\",\"doi\":\"10.1515/bmt-2022-0225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Blood coagulation function is an essential index in clinical examination, and it is of great significance to evaluate blood coagulation function comprehensively. Based on the blood viscoelasticity theory and hydrodynamics, we proposed a method to monitor the whole blood coagulation process based on the reciprocating motion of the magnetic bead (magnetic bead method for short). We have established a mathematical model between the moment acting on the magnetic bead and the viscoelasticity of blood in the process of blood coagulation. The change of blood viscoelasticity acks on the magnetic bead in the form of moment changes, which shows that the amplitude of the motion of the magnetic bead varies with the change of blood viscoelasticity. Designed and verified a blood coagulation monitoring device based on the reciprocating movement of the magnetic bead and discussed the device's parameters through the orthogonal experiment. Lastly, the TEG5000 was used as the control group to test the thromboelasticity of four groups of thromboelastography quality control products in the same batch and 10 groups of human whole blood. It verified that our device has good repeatability, and has good consistency with TEG5000, it has particular application potential as a new blood coagulation monitoring method.</p>\",\"PeriodicalId\":8900,\"journal\":{\"name\":\"Biomedical Engineering / Biomedizinische Technik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering / Biomedizinische Technik\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/bmt-2022-0225\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering / Biomedizinische Technik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/bmt-2022-0225","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

凝血功能是临床检查的一项重要指标,全面评价凝血功能具有重要意义。基于血液粘弹性理论和流体力学,提出了一种基于磁珠往复运动的全血凝过程监测方法(简称磁珠法)。建立了血液凝固过程中作用在磁珠上的力矩与血液粘弹性之间的数学模型。血液粘弹性的变化以力矩变化的形式体现在磁珠上,表明磁珠的运动幅度随血液粘弹性的变化而变化。设计并验证了一种基于磁珠往复运动的凝血监测装置,并通过正交实验对装置参数进行了讨论。最后,以TEG5000作为对照组,检测同批次4组血栓弹性成像质控品和10组人全血的血栓弹性。验证了该装置重复性好,与TEG5000具有良好的一致性,作为一种新的凝血监测方法具有特殊的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development and verification of a novel blood viscoelastic monitoring method based on reciprocating motion of magnetic bead.

Blood coagulation function is an essential index in clinical examination, and it is of great significance to evaluate blood coagulation function comprehensively. Based on the blood viscoelasticity theory and hydrodynamics, we proposed a method to monitor the whole blood coagulation process based on the reciprocating motion of the magnetic bead (magnetic bead method for short). We have established a mathematical model between the moment acting on the magnetic bead and the viscoelasticity of blood in the process of blood coagulation. The change of blood viscoelasticity acks on the magnetic bead in the form of moment changes, which shows that the amplitude of the motion of the magnetic bead varies with the change of blood viscoelasticity. Designed and verified a blood coagulation monitoring device based on the reciprocating movement of the magnetic bead and discussed the device's parameters through the orthogonal experiment. Lastly, the TEG5000 was used as the control group to test the thromboelasticity of four groups of thromboelastography quality control products in the same batch and 10 groups of human whole blood. It verified that our device has good repeatability, and has good consistency with TEG5000, it has particular application potential as a new blood coagulation monitoring method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
5.90%
发文量
58
审稿时长
2-3 weeks
期刊介绍: Biomedical Engineering / Biomedizinische Technik (BMT) is a high-quality forum for the exchange of knowledge in the fields of biomedical engineering, medical information technology and biotechnology/bioengineering. As an established journal with a tradition of more than 60 years, BMT addresses engineers, natural scientists, and clinicians working in research, industry, or clinical practice.
期刊最新文献
Evaluation of the RF depositions at 3T in routine clinical scans with respect to the SAR safety to improve efficiency of MRI utilization Comparative evaluation of volumetry estimation from plain and contrast enhanced computed tomography liver images Sparse-view CT reconstruction based on group-based sparse representation using weighted guided image filtering Actuators and transmission mechanisms in rehabilitation lower limb exoskeletons: a review Abstracts of the 2023 Annual Meeting of the Austrian Society for Biomedical Engineering (ÖGBMT)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1