螺旋特异性及其在合成多肽中的应用

IF 12.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Current Opinion in Solid State & Materials Science Pub Date : 2023-10-01 DOI:10.1016/j.cossms.2023.101104
Ning Li , Yuheng Lei , Ziyuan Song, Lichen Yin
{"title":"螺旋特异性及其在合成多肽中的应用","authors":"Ning Li ,&nbsp;Yuheng Lei ,&nbsp;Ziyuan Song,&nbsp;Lichen Yin","doi":"10.1016/j.cossms.2023.101104","DOIUrl":null,"url":null,"abstract":"<div><p>Polypeptides obtained from the ring-opening polymerization of <em>N</em><span>-carboxyanhydrides, as the synthetic analogues of natural proteins, have drawn broad interests during the recent three decades. Unlike other synthetic polymers, polypeptides form ordered secondary structures like α-helices and β-sheets, which offer conformation-specific functions that are not observed in unstructured polymers. In this article, we summarized the unique structural features of α-helical polypeptides compared to their random-coiled analogues, and reviewed the helix-associated assembly behaviors and biomedical functions based on the structural differences. In addition, the characterization and modulation of polypeptide conformations were also discussed. We believe this review will shed light on the future design of synthetic polypeptides with helix-specific properties, further expanding the scope of polypeptide materials.</span></p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"27 5","pages":"Article 101104"},"PeriodicalIF":12.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Helix-specific properties and applications in synthetic polypeptides\",\"authors\":\"Ning Li ,&nbsp;Yuheng Lei ,&nbsp;Ziyuan Song,&nbsp;Lichen Yin\",\"doi\":\"10.1016/j.cossms.2023.101104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polypeptides obtained from the ring-opening polymerization of <em>N</em><span>-carboxyanhydrides, as the synthetic analogues of natural proteins, have drawn broad interests during the recent three decades. Unlike other synthetic polymers, polypeptides form ordered secondary structures like α-helices and β-sheets, which offer conformation-specific functions that are not observed in unstructured polymers. In this article, we summarized the unique structural features of α-helical polypeptides compared to their random-coiled analogues, and reviewed the helix-associated assembly behaviors and biomedical functions based on the structural differences. In addition, the characterization and modulation of polypeptide conformations were also discussed. We believe this review will shed light on the future design of synthetic polypeptides with helix-specific properties, further expanding the scope of polypeptide materials.</span></p></div>\",\"PeriodicalId\":295,\"journal\":{\"name\":\"Current Opinion in Solid State & Materials Science\",\"volume\":\"27 5\",\"pages\":\"Article 101104\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Solid State & Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359028623000499\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028623000499","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从n -羧基氢化物开环聚合得到的多肽作为天然蛋白质的合成类似物,在近三十年来引起了广泛的兴趣。与其他合成聚合物不同,多肽形成有序的二级结构,如α-螺旋和β-片,这提供了非结构化聚合物中所没有的构象特异性功能。本文综述了α-螺旋多肽相对于其随机卷曲类似物的独特结构特征,并基于其结构差异对螺旋相关的组装行为和生物医学功能进行了综述。此外,还讨论了多肽构象的表征和调控。我们相信这一综述将为未来设计具有螺旋特异性的合成多肽提供指导,进一步扩大多肽材料的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Helix-specific properties and applications in synthetic polypeptides

Polypeptides obtained from the ring-opening polymerization of N-carboxyanhydrides, as the synthetic analogues of natural proteins, have drawn broad interests during the recent three decades. Unlike other synthetic polymers, polypeptides form ordered secondary structures like α-helices and β-sheets, which offer conformation-specific functions that are not observed in unstructured polymers. In this article, we summarized the unique structural features of α-helical polypeptides compared to their random-coiled analogues, and reviewed the helix-associated assembly behaviors and biomedical functions based on the structural differences. In addition, the characterization and modulation of polypeptide conformations were also discussed. We believe this review will shed light on the future design of synthetic polypeptides with helix-specific properties, further expanding the scope of polypeptide materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Solid State & Materials Science
Current Opinion in Solid State & Materials Science 工程技术-材料科学:综合
CiteScore
21.10
自引率
3.60%
发文量
41
审稿时长
47 days
期刊介绍: Title: Current Opinion in Solid State & Materials Science Journal Overview: Aims to provide a snapshot of the latest research and advances in materials science Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research Promotes cross-fertilization of ideas across an increasingly interdisciplinary field
期刊最新文献
The path towards plasma facing components: A review of state-of-the-art in W-based refractory high-entropy alloys Artificial Intelligence and Machine Learning for materials Grain refinement and morphological control of intermetallic compounds: A comprehensive review Autonomous research and development of structural materials – An introduction and vision Monolithic 3D integration as a pathway to energy-efficient computing and beyond: From materials and devices to architectures and chips
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1