{"title":"抗抑郁药对人类神经发育的影响:脑类器官作为实验工具","authors":"Luciana Simões Rafagnin Marinho , Gabrielly Maria Denadai Chiarantin , Juliane Midori Ikebara , Débora Sterzeck Cardoso , Théo Henrique de Lima-Vasconcellos , Guilherme Shigueto Vilar Higa , Mariana Sacrini Ayres Ferraz , Roberto De Pasquale , Silvia Honda Takada , Fabio Papes , Alysson R. Muotri , Alexandre Hiroaki Kihara","doi":"10.1016/j.semcdb.2022.09.007","DOIUrl":null,"url":null,"abstract":"<div><p><span>The use of antidepressants during pregnancy benefits the mother's well-being, but the effects of such substances on neurodevelopment remain poorly understood. Moreover, the consequences of early exposure to antidepressants may not be immediately apparent at birth. </span><em>In utero</em><span><span><span> exposure to selective serotonin reuptake inhibitors<span><span><span> (SSRIs) has been related to developmental abnormalities, including a reduced white matter volume. Several reports have observed an increased incidence of autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) after prenatal exposure to SSRIs such as sertraline, the most widely prescribed SSRI. The advent of human-induced pluripotent stem cell (hiPSC) methods and assays now offers appropriate tools to test the consequences of such compounds for neurodevelopment in vitro. In particular, hiPSCs can be used to generate cerebral organoids – self-organized structures that recapitulate the morphology and complex physiology of the developing human brain, overcoming the limitations found in 2D cell culture and experimental </span>animal models for testing </span>drug efficacy and side effects. For example, single-cell </span></span>RNA sequencing (scRNA-seq) and electrophysiological measurements on organoids can be used to evaluate the impact of antidepressants on the </span>transcriptome<span><span><span> and neuronal activity signatures in developing neurons. While the analysis of large-scale </span>transcriptomic data depends on dimensionality reduction methods, </span>electrophysiological recordings rely on temporal data series to discriminate statistical characteristics of neuronal activity, allowing for the rigorous analysis of the effects of antidepressants and other molecules that affect the developing nervous system, especially when applied in combination with relevant human cellular models such as brain organoids.</span></span></p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"144 ","pages":"Pages 67-76"},"PeriodicalIF":6.2000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The impact of antidepressants on human neurodevelopment: Brain organoids as experimental tools\",\"authors\":\"Luciana Simões Rafagnin Marinho , Gabrielly Maria Denadai Chiarantin , Juliane Midori Ikebara , Débora Sterzeck Cardoso , Théo Henrique de Lima-Vasconcellos , Guilherme Shigueto Vilar Higa , Mariana Sacrini Ayres Ferraz , Roberto De Pasquale , Silvia Honda Takada , Fabio Papes , Alysson R. Muotri , Alexandre Hiroaki Kihara\",\"doi\":\"10.1016/j.semcdb.2022.09.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The use of antidepressants during pregnancy benefits the mother's well-being, but the effects of such substances on neurodevelopment remain poorly understood. Moreover, the consequences of early exposure to antidepressants may not be immediately apparent at birth. </span><em>In utero</em><span><span><span> exposure to selective serotonin reuptake inhibitors<span><span><span> (SSRIs) has been related to developmental abnormalities, including a reduced white matter volume. Several reports have observed an increased incidence of autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) after prenatal exposure to SSRIs such as sertraline, the most widely prescribed SSRI. The advent of human-induced pluripotent stem cell (hiPSC) methods and assays now offers appropriate tools to test the consequences of such compounds for neurodevelopment in vitro. In particular, hiPSCs can be used to generate cerebral organoids – self-organized structures that recapitulate the morphology and complex physiology of the developing human brain, overcoming the limitations found in 2D cell culture and experimental </span>animal models for testing </span>drug efficacy and side effects. For example, single-cell </span></span>RNA sequencing (scRNA-seq) and electrophysiological measurements on organoids can be used to evaluate the impact of antidepressants on the </span>transcriptome<span><span><span> and neuronal activity signatures in developing neurons. While the analysis of large-scale </span>transcriptomic data depends on dimensionality reduction methods, </span>electrophysiological recordings rely on temporal data series to discriminate statistical characteristics of neuronal activity, allowing for the rigorous analysis of the effects of antidepressants and other molecules that affect the developing nervous system, especially when applied in combination with relevant human cellular models such as brain organoids.</span></span></p></div>\",\"PeriodicalId\":21735,\"journal\":{\"name\":\"Seminars in cell & developmental biology\",\"volume\":\"144 \",\"pages\":\"Pages 67-76\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2023-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in cell & developmental biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1084952122002695\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cell & developmental biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084952122002695","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The impact of antidepressants on human neurodevelopment: Brain organoids as experimental tools
The use of antidepressants during pregnancy benefits the mother's well-being, but the effects of such substances on neurodevelopment remain poorly understood. Moreover, the consequences of early exposure to antidepressants may not be immediately apparent at birth. In utero exposure to selective serotonin reuptake inhibitors (SSRIs) has been related to developmental abnormalities, including a reduced white matter volume. Several reports have observed an increased incidence of autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) after prenatal exposure to SSRIs such as sertraline, the most widely prescribed SSRI. The advent of human-induced pluripotent stem cell (hiPSC) methods and assays now offers appropriate tools to test the consequences of such compounds for neurodevelopment in vitro. In particular, hiPSCs can be used to generate cerebral organoids – self-organized structures that recapitulate the morphology and complex physiology of the developing human brain, overcoming the limitations found in 2D cell culture and experimental animal models for testing drug efficacy and side effects. For example, single-cell RNA sequencing (scRNA-seq) and electrophysiological measurements on organoids can be used to evaluate the impact of antidepressants on the transcriptome and neuronal activity signatures in developing neurons. While the analysis of large-scale transcriptomic data depends on dimensionality reduction methods, electrophysiological recordings rely on temporal data series to discriminate statistical characteristics of neuronal activity, allowing for the rigorous analysis of the effects of antidepressants and other molecules that affect the developing nervous system, especially when applied in combination with relevant human cellular models such as brain organoids.
期刊介绍:
Seminars in Cell and Developmental Biology is a review journal dedicated to keeping scientists informed of developments in the field of molecular cell and developmental biology, on a topic by topic basis. Each issue is thematic in approach, devoted to an important topic of interest to cell and developmental biologists, focusing on the latest advances and their specific implications.
The aim of each issue is to provide a coordinated, readable, and lively review of a selected area, published rapidly to ensure currency.