{"title":"从不同的基于位置的数据源产生的人类移动网络分析是否在不同的尺度上产生相似的结果?","authors":"Chia-Wei Hsu, Chenyue Liu, Kiet Minh Nguyen, Yu-Heng Chien, Ali Mostafavi","doi":"10.1016/j.compenvurbsys.2023.102052","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The burgeoning availability of sensing technology and location-based data is driving the expansion of analysis of human </span>mobility networks in science and engineering research, as well as in epidemic forecasting and mitigation, urban planning, </span>traffic engineering<span>, emergency response, and business development. However, studies employ datasets provided by different location-based data providers, and the extent to which the human mobility measures and results obtained from different datasets are comparable is not known. To address this gap, in this study, we examined three prominent location-based data sources—Spectus, X-Mode, and Veraset—to analyze human mobility networks across metropolitan areas at different scales: global, sub-structure, and microscopic. Dissimilar results were obtained from the three datasets, suggesting the sensitivity of network models and measures to datasets. This finding has important implications for building generalized theories of human mobility and urban dynamics based on different datasets. The findings also highlighted the need for ground-truthed human movement datasets to serve as the benchmark for testing the representativeness of human mobility datasets. Researchers and decision-makers across different fields of science and technology should recognize the sensitivity of human mobility results to dataset choice and develop procedures for ground-truthing the selected datasets in terms of representativeness of data points and transferability of results.</span></p></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"107 ","pages":"Article 102052"},"PeriodicalIF":7.1000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Do human mobility network analyses produced from different location-based data sources yield similar results across scales?\",\"authors\":\"Chia-Wei Hsu, Chenyue Liu, Kiet Minh Nguyen, Yu-Heng Chien, Ali Mostafavi\",\"doi\":\"10.1016/j.compenvurbsys.2023.102052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>The burgeoning availability of sensing technology and location-based data is driving the expansion of analysis of human </span>mobility networks in science and engineering research, as well as in epidemic forecasting and mitigation, urban planning, </span>traffic engineering<span>, emergency response, and business development. However, studies employ datasets provided by different location-based data providers, and the extent to which the human mobility measures and results obtained from different datasets are comparable is not known. To address this gap, in this study, we examined three prominent location-based data sources—Spectus, X-Mode, and Veraset—to analyze human mobility networks across metropolitan areas at different scales: global, sub-structure, and microscopic. Dissimilar results were obtained from the three datasets, suggesting the sensitivity of network models and measures to datasets. This finding has important implications for building generalized theories of human mobility and urban dynamics based on different datasets. The findings also highlighted the need for ground-truthed human movement datasets to serve as the benchmark for testing the representativeness of human mobility datasets. Researchers and decision-makers across different fields of science and technology should recognize the sensitivity of human mobility results to dataset choice and develop procedures for ground-truthing the selected datasets in terms of representativeness of data points and transferability of results.</span></p></div>\",\"PeriodicalId\":48241,\"journal\":{\"name\":\"Computers Environment and Urban Systems\",\"volume\":\"107 \",\"pages\":\"Article 102052\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers Environment and Urban Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0198971523001151\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971523001151","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Do human mobility network analyses produced from different location-based data sources yield similar results across scales?
The burgeoning availability of sensing technology and location-based data is driving the expansion of analysis of human mobility networks in science and engineering research, as well as in epidemic forecasting and mitigation, urban planning, traffic engineering, emergency response, and business development. However, studies employ datasets provided by different location-based data providers, and the extent to which the human mobility measures and results obtained from different datasets are comparable is not known. To address this gap, in this study, we examined three prominent location-based data sources—Spectus, X-Mode, and Veraset—to analyze human mobility networks across metropolitan areas at different scales: global, sub-structure, and microscopic. Dissimilar results were obtained from the three datasets, suggesting the sensitivity of network models and measures to datasets. This finding has important implications for building generalized theories of human mobility and urban dynamics based on different datasets. The findings also highlighted the need for ground-truthed human movement datasets to serve as the benchmark for testing the representativeness of human mobility datasets. Researchers and decision-makers across different fields of science and technology should recognize the sensitivity of human mobility results to dataset choice and develop procedures for ground-truthing the selected datasets in terms of representativeness of data points and transferability of results.
期刊介绍:
Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.