利用小波分解实现波动率预测

IF 2.1 2区 经济学 Q2 BUSINESS, FINANCE Journal of Empirical Finance Pub Date : 2023-10-13 DOI:10.1016/j.jempfin.2023.101432
Ioannis Souropanis, Andrew Vivian
{"title":"利用小波分解实现波动率预测","authors":"Ioannis Souropanis,&nbsp;Andrew Vivian","doi":"10.1016/j.jempfin.2023.101432","DOIUrl":null,"url":null,"abstract":"<div><p>Forecasting Realized Volatility (RV) is of paramount importance for both academics and practitioners. During recent decades, academic literature has made substantial progress both in terms of methods and predictors under consideration albeit with scarce reference to technical indicators. This paper examines the out-of-sample forecasting performance of technical indicators for S&amp;P500 RV relative to macroeconomic predictors. Our main contribution is to demonstrate that these sets of predictors impact volatility at different frequencies and thus are complementary. Specifically, technical indicators perform especially strongly for forecasting the short frequency component which complements macroeconomic variables which perform strongly at longer frequencies. We demonstrate that amalgamation forecasts from these predictors that takes into account the frequency dimension leads to substantial improvements in forecast accuracy.</p></div>","PeriodicalId":15704,"journal":{"name":"Journal of Empirical Finance","volume":"74 ","pages":"Article 101432"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0927539823000993/pdfft?md5=b3d3a8a151a5f2ba18009a6388c7878b&pid=1-s2.0-S0927539823000993-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Forecasting realized volatility with wavelet decomposition\",\"authors\":\"Ioannis Souropanis,&nbsp;Andrew Vivian\",\"doi\":\"10.1016/j.jempfin.2023.101432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Forecasting Realized Volatility (RV) is of paramount importance for both academics and practitioners. During recent decades, academic literature has made substantial progress both in terms of methods and predictors under consideration albeit with scarce reference to technical indicators. This paper examines the out-of-sample forecasting performance of technical indicators for S&amp;P500 RV relative to macroeconomic predictors. Our main contribution is to demonstrate that these sets of predictors impact volatility at different frequencies and thus are complementary. Specifically, technical indicators perform especially strongly for forecasting the short frequency component which complements macroeconomic variables which perform strongly at longer frequencies. We demonstrate that amalgamation forecasts from these predictors that takes into account the frequency dimension leads to substantial improvements in forecast accuracy.</p></div>\",\"PeriodicalId\":15704,\"journal\":{\"name\":\"Journal of Empirical Finance\",\"volume\":\"74 \",\"pages\":\"Article 101432\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0927539823000993/pdfft?md5=b3d3a8a151a5f2ba18009a6388c7878b&pid=1-s2.0-S0927539823000993-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Empirical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927539823000993\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Empirical Finance","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927539823000993","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

预测已实现波动率(RV)对于学术界和实践者来说都是至关重要的。近几十年来,学术文献在方法和所考虑的预测指标方面取得了实质性进展,尽管很少提及技术指标。本文检验了相对于宏观经济预测指标的s&p;P500 RV技术指标的样本外预测性能。我们的主要贡献是证明这些预测因子以不同的频率影响波动性,因此是互补的。具体地说,技术指标在预测短频率成分方面表现特别强劲,它补充了在较长频率表现强劲的宏观经济变量。我们证明,考虑到频率维度的这些预测器的合并预测导致预测精度的实质性提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting realized volatility with wavelet decomposition

Forecasting Realized Volatility (RV) is of paramount importance for both academics and practitioners. During recent decades, academic literature has made substantial progress both in terms of methods and predictors under consideration albeit with scarce reference to technical indicators. This paper examines the out-of-sample forecasting performance of technical indicators for S&P500 RV relative to macroeconomic predictors. Our main contribution is to demonstrate that these sets of predictors impact volatility at different frequencies and thus are complementary. Specifically, technical indicators perform especially strongly for forecasting the short frequency component which complements macroeconomic variables which perform strongly at longer frequencies. We demonstrate that amalgamation forecasts from these predictors that takes into account the frequency dimension leads to substantial improvements in forecast accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
3.80%
发文量
59
期刊介绍: The Journal of Empirical Finance is a financial economics journal whose aim is to publish high quality articles in empirical finance. Empirical finance is interpreted broadly to include any type of empirical work in financial economics, financial econometrics, and also theoretical work with clear empirical implications, even when there is no empirical analysis. The Journal welcomes articles in all fields of finance, such as asset pricing, corporate finance, financial econometrics, banking, international finance, microstructure, behavioural finance, etc. The Editorial Team is willing to take risks on innovative research, controversial papers, and unusual approaches. We are also particularly interested in work produced by young scholars. The composition of the editorial board reflects such goals.
期刊最新文献
High-frequency realized stochastic volatility model Jump tail risk exposure and the cross-section of stock returns Time-varying variance decomposition of macro-finance term structure models Technological shocks and stock market volatility over a century Is firm-level political risk priced in the corporate bond market?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1