Mohammed Aissaoui , Chiraz Houaidia , Adrien Van Den Bossche , Thierry Val , Leïla Azouz Saidane
{"title":"分布式物理层网络编码MAC协议","authors":"Mohammed Aissaoui , Chiraz Houaidia , Adrien Van Den Bossche , Thierry Val , Leïla Azouz Saidane","doi":"10.1016/j.adhoc.2023.103344","DOIUrl":null,"url":null,"abstract":"<div><p>Physical-layer Network Coding (PNC) was first proposed for a Two-Way Relay Channel<span> (TWRC) to improve the spectrum efficiency since it allows nodes to transmit simultaneously via a relay node. This technique requires multiple nodes to transmit their packets with accurate synchronization. Therefore, in many works of literature, centralized scheduling with perfect synchronization has been assumed to be employed on top of PNC.</span></p><p><span><span>Such assumptions are not applicable in general random access multi-hop wireless networks. Therefore, this paper proposes a distributed MAC protocol that supports PNC in static multi-hop wireless networks. The proposed MAC protocol is based on the Carrier Sense Multiple Access (CSMA) strategy, where RTS/CTS frames are used to detect PNC opportunities and to offer the appropriate scheduling of the involved transmissions that should occur simultaneously. This </span>packet exchange process is coordinated by the relay node and was designed to guarantee compatibility with other conventional relaying schemes with specific concerns for the hidden node issues. Our solution was practically tested on a real </span>testbed with different static wireless topologies and several physical settings.</p><p>With numerical results, we investigate the effectiveness of PNC in distributed wireless multi-hop networks. Compared to the conventional CSMA/CA and the PNC opportunistic (PNCOPP) MAC protocols, the proposed protocol’s performances are advantageous in various scenarios, especially in large networks.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Physical-layer Network Coding MAC protocol\",\"authors\":\"Mohammed Aissaoui , Chiraz Houaidia , Adrien Van Den Bossche , Thierry Val , Leïla Azouz Saidane\",\"doi\":\"10.1016/j.adhoc.2023.103344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Physical-layer Network Coding (PNC) was first proposed for a Two-Way Relay Channel<span> (TWRC) to improve the spectrum efficiency since it allows nodes to transmit simultaneously via a relay node. This technique requires multiple nodes to transmit their packets with accurate synchronization. Therefore, in many works of literature, centralized scheduling with perfect synchronization has been assumed to be employed on top of PNC.</span></p><p><span><span>Such assumptions are not applicable in general random access multi-hop wireless networks. Therefore, this paper proposes a distributed MAC protocol that supports PNC in static multi-hop wireless networks. The proposed MAC protocol is based on the Carrier Sense Multiple Access (CSMA) strategy, where RTS/CTS frames are used to detect PNC opportunities and to offer the appropriate scheduling of the involved transmissions that should occur simultaneously. This </span>packet exchange process is coordinated by the relay node and was designed to guarantee compatibility with other conventional relaying schemes with specific concerns for the hidden node issues. Our solution was practically tested on a real </span>testbed with different static wireless topologies and several physical settings.</p><p>With numerical results, we investigate the effectiveness of PNC in distributed wireless multi-hop networks. Compared to the conventional CSMA/CA and the PNC opportunistic (PNCOPP) MAC protocols, the proposed protocol’s performances are advantageous in various scenarios, especially in large networks.</p></div>\",\"PeriodicalId\":55555,\"journal\":{\"name\":\"Ad Hoc Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570870523002640\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870523002640","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Distributed Physical-layer Network Coding MAC protocol
Physical-layer Network Coding (PNC) was first proposed for a Two-Way Relay Channel (TWRC) to improve the spectrum efficiency since it allows nodes to transmit simultaneously via a relay node. This technique requires multiple nodes to transmit their packets with accurate synchronization. Therefore, in many works of literature, centralized scheduling with perfect synchronization has been assumed to be employed on top of PNC.
Such assumptions are not applicable in general random access multi-hop wireless networks. Therefore, this paper proposes a distributed MAC protocol that supports PNC in static multi-hop wireless networks. The proposed MAC protocol is based on the Carrier Sense Multiple Access (CSMA) strategy, where RTS/CTS frames are used to detect PNC opportunities and to offer the appropriate scheduling of the involved transmissions that should occur simultaneously. This packet exchange process is coordinated by the relay node and was designed to guarantee compatibility with other conventional relaying schemes with specific concerns for the hidden node issues. Our solution was practically tested on a real testbed with different static wireless topologies and several physical settings.
With numerical results, we investigate the effectiveness of PNC in distributed wireless multi-hop networks. Compared to the conventional CSMA/CA and the PNC opportunistic (PNCOPP) MAC protocols, the proposed protocol’s performances are advantageous in various scenarios, especially in large networks.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.