基于广义s引理的非精确数据的二次可调鲁棒线性优化:精确二阶锥规划的重新表述

IF 2.6 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE EURO Journal on Computational Optimization Pub Date : 2021-01-01 DOI:10.1016/j.ejco.2021.100019
V. Jeyakumar, G. Li, D. Woolnough
{"title":"基于广义s引理的非精确数据的二次可调鲁棒线性优化:精确二阶锥规划的重新表述","authors":"V. Jeyakumar,&nbsp;G. Li,&nbsp;D. Woolnough","doi":"10.1016/j.ejco.2021.100019","DOIUrl":null,"url":null,"abstract":"<div><p>Adjustable robust optimization allows for some variables to depend upon the uncertain data after its realization. However, the uncertainty is often not revealed exactly. Incorporating inexactness of the revealed data in the construction of ellipsoidal uncertainty sets, we present an exact second-order cone program reformulation for robust linear optimization problems with inexact data and quadratically adjustable variables. This is achieved by establishing a generalization of the celebrated S-lemma for a separable quadratic inequality system with at most one non-homogeneous function. It allows us to reformulate the resulting separable quadratic constraints over an intersection of two ellipsoids in terms of second-order cone constraints. We illustrate our results via numerical experiments on adjustable robust lot-sizing problems with demand uncertainty, showing improvements over corresponding problems with affinely adjustable variables as well as with exactly revealed data.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"9 ","pages":"Article 100019"},"PeriodicalIF":2.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2192440621001465/pdfft?md5=a4dc90a6e60a07a7b22d11984e1bb230&pid=1-s2.0-S2192440621001465-main.pdf","citationCount":"3","resultStr":"{\"title\":\"Quadratically adjustable robust linear optimization with inexact data via generalized S-lemma: Exact second-order cone program reformulations\",\"authors\":\"V. Jeyakumar,&nbsp;G. Li,&nbsp;D. Woolnough\",\"doi\":\"10.1016/j.ejco.2021.100019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Adjustable robust optimization allows for some variables to depend upon the uncertain data after its realization. However, the uncertainty is often not revealed exactly. Incorporating inexactness of the revealed data in the construction of ellipsoidal uncertainty sets, we present an exact second-order cone program reformulation for robust linear optimization problems with inexact data and quadratically adjustable variables. This is achieved by establishing a generalization of the celebrated S-lemma for a separable quadratic inequality system with at most one non-homogeneous function. It allows us to reformulate the resulting separable quadratic constraints over an intersection of two ellipsoids in terms of second-order cone constraints. We illustrate our results via numerical experiments on adjustable robust lot-sizing problems with demand uncertainty, showing improvements over corresponding problems with affinely adjustable variables as well as with exactly revealed data.</p></div>\",\"PeriodicalId\":51880,\"journal\":{\"name\":\"EURO Journal on Computational Optimization\",\"volume\":\"9 \",\"pages\":\"Article 100019\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2192440621001465/pdfft?md5=a4dc90a6e60a07a7b22d11984e1bb230&pid=1-s2.0-S2192440621001465-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Computational Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2192440621001465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440621001465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 3

摘要

可调鲁棒优化实现后,允许一些变量依赖于不确定数据。然而,这种不确定性往往没有被准确地揭示出来。考虑到椭球面不确定性集构造中数据的不精确性,我们提出了具有不精确性数据和二次可调变量的鲁棒线性优化问题的精确二阶锥规划重构。这是通过建立一个最少有一个非齐次函数的可分离二次不等式系统的著名s引理的推广来实现的。它允许我们用二阶锥约束重新表述两个椭球相交上的可分离二次约束。我们通过具有需求不确定性的可调鲁棒批量问题的数值实验来说明我们的结果,显示出与具有仿射可调变量以及精确显示数据的相应问题相比的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quadratically adjustable robust linear optimization with inexact data via generalized S-lemma: Exact second-order cone program reformulations

Adjustable robust optimization allows for some variables to depend upon the uncertain data after its realization. However, the uncertainty is often not revealed exactly. Incorporating inexactness of the revealed data in the construction of ellipsoidal uncertainty sets, we present an exact second-order cone program reformulation for robust linear optimization problems with inexact data and quadratically adjustable variables. This is achieved by establishing a generalization of the celebrated S-lemma for a separable quadratic inequality system with at most one non-homogeneous function. It allows us to reformulate the resulting separable quadratic constraints over an intersection of two ellipsoids in terms of second-order cone constraints. We illustrate our results via numerical experiments on adjustable robust lot-sizing problems with demand uncertainty, showing improvements over corresponding problems with affinely adjustable variables as well as with exactly revealed data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EURO Journal on Computational Optimization
EURO Journal on Computational Optimization OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
3.50
自引率
0.00%
发文量
28
审稿时长
60 days
期刊介绍: The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.
期刊最新文献
Unboxing Tree ensembles for interpretability: A hierarchical visualization tool and a multivariate optimal re-built tree An effective hybrid decomposition approach to solve the network-constrained stochastic unit commitment problem in large-scale power systems Advances in nonlinear optimization and equilibrium problems – Special issue editorial The Marguerite Frank Award for the best EJCO paper 2023 A variable metric proximal stochastic gradient method: An application to classification problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1