{"title":"用ε-聚赖氨酸和葡聚糖制备可食用生物共轭物,改善β-红霉素的功能。","authors":"Tadashi Yoshida, Ikumi Hamaji, Takeshi Hashimoto, Takuya Matsumoto, Makoto Hattori","doi":"10.1007/s10616-022-00568-6","DOIUrl":null,"url":null,"abstract":"<p><p>β-Conglycinin was conjugated with ε-polylysine (PL) by means of microbial transglutaminase (MTGase) to improve its function. The β-conglycinin-PL conjugate was purified by dialysis. Composition of the β-conglycinin-PL was β-conglycinin:PL = 1:18 (molar ratio) which was confirmed by amino acid analysis. The β-conglycinin-PL was further conjugated with dextran (Dex) by the Maillard reaction. The β-conglycinin-PL-Dex conjugate was purified by dialysis. Conjugation was confirmed by SDS-PAGE and PAS staining. Composition of the β-conglycinin-PL-Dex was β-conglycinin-PL:Dex = 1:41 (molar ratio) which was confirmed by UV spectra measurement and phenol sulfuric acid method. Solubility of β-conglycinin in the acidic range was much improved by conjugation with PL and further improved by further conjugation with Dex. Emulsifying property of β-conglycinin in acidic pH range was much improved by conjugation with PL and Dex. Immunogenicity of β-conglycinin was decreased by conjugation with PL and Dex.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030745/pdf/","citationCount":"0","resultStr":"{\"title\":\"<b>Functional improvements in β-conglycinin by preparing edible bioconjugates with</b> ε<b>-polylysine and dextran</b>.\",\"authors\":\"Tadashi Yoshida, Ikumi Hamaji, Takeshi Hashimoto, Takuya Matsumoto, Makoto Hattori\",\"doi\":\"10.1007/s10616-022-00568-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>β-Conglycinin was conjugated with ε-polylysine (PL) by means of microbial transglutaminase (MTGase) to improve its function. The β-conglycinin-PL conjugate was purified by dialysis. Composition of the β-conglycinin-PL was β-conglycinin:PL = 1:18 (molar ratio) which was confirmed by amino acid analysis. The β-conglycinin-PL was further conjugated with dextran (Dex) by the Maillard reaction. The β-conglycinin-PL-Dex conjugate was purified by dialysis. Conjugation was confirmed by SDS-PAGE and PAS staining. Composition of the β-conglycinin-PL-Dex was β-conglycinin-PL:Dex = 1:41 (molar ratio) which was confirmed by UV spectra measurement and phenol sulfuric acid method. Solubility of β-conglycinin in the acidic range was much improved by conjugation with PL and further improved by further conjugation with Dex. Emulsifying property of β-conglycinin in acidic pH range was much improved by conjugation with PL and Dex. Immunogenicity of β-conglycinin was decreased by conjugation with PL and Dex.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10030745/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10616-022-00568-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-022-00568-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Functional improvements in β-conglycinin by preparing edible bioconjugates with ε-polylysine and dextran.
β-Conglycinin was conjugated with ε-polylysine (PL) by means of microbial transglutaminase (MTGase) to improve its function. The β-conglycinin-PL conjugate was purified by dialysis. Composition of the β-conglycinin-PL was β-conglycinin:PL = 1:18 (molar ratio) which was confirmed by amino acid analysis. The β-conglycinin-PL was further conjugated with dextran (Dex) by the Maillard reaction. The β-conglycinin-PL-Dex conjugate was purified by dialysis. Conjugation was confirmed by SDS-PAGE and PAS staining. Composition of the β-conglycinin-PL-Dex was β-conglycinin-PL:Dex = 1:41 (molar ratio) which was confirmed by UV spectra measurement and phenol sulfuric acid method. Solubility of β-conglycinin in the acidic range was much improved by conjugation with PL and further improved by further conjugation with Dex. Emulsifying property of β-conglycinin in acidic pH range was much improved by conjugation with PL and Dex. Immunogenicity of β-conglycinin was decreased by conjugation with PL and Dex.