Chongwei Huang , Haohe Du , Lin Li , Jing Ni , Yu Sun
{"title":"基于树的方法在大型混合盾构隧道开挖地表沉降预测中的应用","authors":"Chongwei Huang , Haohe Du , Lin Li , Jing Ni , Yu Sun","doi":"10.1016/j.sandf.2023.101379","DOIUrl":null,"url":null,"abstract":"<div><p>Surface settlement due to tunnel excavation is affected by several factors. However, no explicit mapping correlation exists between surface settlement and the main influencing factors. In this study, three tree-based methodologies, including classification and regression tree (CART), random forest (RF), and gradient boosting decision tree (GBRT), were implemented to predict the tunneling-induced surface settlement of the South Hong-Mei Road tunnel in Shanghai, where a large mix-shield was used. Thirteen influencing factors within three categories (tunnel geometry, geological conditions, and shield operation factors) were employed as input variables. Results show that the ensemble methods (RF and GBDT) provide superior performance over the single-tree model (CART). Moreover, GBDT has the highest level of prediction accuracy among the three statistical learning methods. The importance of influencing factors on the tunneling-induced surface settlement was probed. The tunnel geometry had the greatest effect on surface settlement. It is followed by the influencing factors in shield operation factors. Moreover, geological conditions were not as influential as the other influencing factors. The outcomes of this study may provide a reference for evaluating tunneling-induced surface settlement in other similar tunnel projects.</p></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0038080623001087/pdfft?md5=34ea0f1dce2402b9cae6dcd024c77abd&pid=1-s2.0-S0038080623001087-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Application of tree-based methods in predicting the surface settlement arising from the tunnel excavation with large mix-shield\",\"authors\":\"Chongwei Huang , Haohe Du , Lin Li , Jing Ni , Yu Sun\",\"doi\":\"10.1016/j.sandf.2023.101379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Surface settlement due to tunnel excavation is affected by several factors. However, no explicit mapping correlation exists between surface settlement and the main influencing factors. In this study, three tree-based methodologies, including classification and regression tree (CART), random forest (RF), and gradient boosting decision tree (GBRT), were implemented to predict the tunneling-induced surface settlement of the South Hong-Mei Road tunnel in Shanghai, where a large mix-shield was used. Thirteen influencing factors within three categories (tunnel geometry, geological conditions, and shield operation factors) were employed as input variables. Results show that the ensemble methods (RF and GBDT) provide superior performance over the single-tree model (CART). Moreover, GBDT has the highest level of prediction accuracy among the three statistical learning methods. The importance of influencing factors on the tunneling-induced surface settlement was probed. The tunnel geometry had the greatest effect on surface settlement. It is followed by the influencing factors in shield operation factors. Moreover, geological conditions were not as influential as the other influencing factors. The outcomes of this study may provide a reference for evaluating tunneling-induced surface settlement in other similar tunnel projects.</p></div>\",\"PeriodicalId\":21857,\"journal\":{\"name\":\"Soils and Foundations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0038080623001087/pdfft?md5=34ea0f1dce2402b9cae6dcd024c77abd&pid=1-s2.0-S0038080623001087-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soils and Foundations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038080623001087\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080623001087","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Application of tree-based methods in predicting the surface settlement arising from the tunnel excavation with large mix-shield
Surface settlement due to tunnel excavation is affected by several factors. However, no explicit mapping correlation exists between surface settlement and the main influencing factors. In this study, three tree-based methodologies, including classification and regression tree (CART), random forest (RF), and gradient boosting decision tree (GBRT), were implemented to predict the tunneling-induced surface settlement of the South Hong-Mei Road tunnel in Shanghai, where a large mix-shield was used. Thirteen influencing factors within three categories (tunnel geometry, geological conditions, and shield operation factors) were employed as input variables. Results show that the ensemble methods (RF and GBDT) provide superior performance over the single-tree model (CART). Moreover, GBDT has the highest level of prediction accuracy among the three statistical learning methods. The importance of influencing factors on the tunneling-induced surface settlement was probed. The tunnel geometry had the greatest effect on surface settlement. It is followed by the influencing factors in shield operation factors. Moreover, geological conditions were not as influential as the other influencing factors. The outcomes of this study may provide a reference for evaluating tunneling-induced surface settlement in other similar tunnel projects.
期刊介绍:
Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020.
Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.