基于离散事件公共交通仿真模型的交通需求管理对等待时间和拥挤状况的影响

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-01-01 DOI:10.1016/j.jpubtr.2023.100075
Jaime Soza-Parra , Ignacio Tiznado-Aitken , Juan Carlos Muñoz
{"title":"基于离散事件公共交通仿真模型的交通需求管理对等待时间和拥挤状况的影响","authors":"Jaime Soza-Parra ,&nbsp;Ignacio Tiznado-Aitken ,&nbsp;Juan Carlos Muñoz","doi":"10.1016/j.jpubtr.2023.100075","DOIUrl":null,"url":null,"abstract":"<div><p>Several approaches have been proposed and adopted by researchers and decision-makers to improve and deal with public transport operation issues, especially travel demand management (TDM) measures. Disruptions like lockdowns provoked by weather conditions, political riots, special events, natural disaster issues, or the recent COVID-19 pandemic create a need for tools to manage public transport demand and supply o keep users circulating in an efficient, convenient and safe manner. Our work develops a simulation tool of the operations of a public transport system using smart card, GTFS and census data to evaluate the impacts of different intervention scenarios using the pandemic context as a case study. Using a pre-pandemic baseline scenario, we study the impact of several travel demand and public transport supply measures, focusing the analysis on waiting times and crowding conditions inside vehicles and platforms. As a result, we generate easy-to-analyze visual outputs that facilitate prioritizing actions at the metropolitan and district level, identifying where and when waiting times and crowding conditions would exceed certain thresholds.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1077291X2300036X/pdfft?md5=0103c33e1265a68344db147642ba63fd&pid=1-s2.0-S1077291X2300036X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A discrete-event public transportation simulation model to evaluate travel demand management impacts on waiting times and crowding conditions\",\"authors\":\"Jaime Soza-Parra ,&nbsp;Ignacio Tiznado-Aitken ,&nbsp;Juan Carlos Muñoz\",\"doi\":\"10.1016/j.jpubtr.2023.100075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Several approaches have been proposed and adopted by researchers and decision-makers to improve and deal with public transport operation issues, especially travel demand management (TDM) measures. Disruptions like lockdowns provoked by weather conditions, political riots, special events, natural disaster issues, or the recent COVID-19 pandemic create a need for tools to manage public transport demand and supply o keep users circulating in an efficient, convenient and safe manner. Our work develops a simulation tool of the operations of a public transport system using smart card, GTFS and census data to evaluate the impacts of different intervention scenarios using the pandemic context as a case study. Using a pre-pandemic baseline scenario, we study the impact of several travel demand and public transport supply measures, focusing the analysis on waiting times and crowding conditions inside vehicles and platforms. As a result, we generate easy-to-analyze visual outputs that facilitate prioritizing actions at the metropolitan and district level, identifying where and when waiting times and crowding conditions would exceed certain thresholds.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1077291X2300036X/pdfft?md5=0103c33e1265a68344db147642ba63fd&pid=1-s2.0-S1077291X2300036X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077291X2300036X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077291X2300036X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

研究人员和决策者已经提出并采用了几种方法来改善和处理公共交通运营问题,特别是出行需求管理(TDM)措施。天气条件、政治骚乱、特殊事件、自然灾害问题或最近的COVID-19大流行引发的封锁等中断,需要有工具来管理公共交通的需求和供应,以保证用户高效、方便和安全地出行。我们的工作开发了一个公共交通系统运行的模拟工具,使用智能卡、GTFS和人口普查数据,以大流行为案例研究,评估不同干预方案的影响。使用流行病前的基线情景,我们研究了几种旅行需求和公共交通供应措施的影响,重点分析了车辆和平台内的等待时间和拥挤情况。因此,我们生成易于分析的视觉输出,以促进在大都市和地区层面的优先行动,确定何时何地等待时间和拥挤状况将超过一定的阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A discrete-event public transportation simulation model to evaluate travel demand management impacts on waiting times and crowding conditions

Several approaches have been proposed and adopted by researchers and decision-makers to improve and deal with public transport operation issues, especially travel demand management (TDM) measures. Disruptions like lockdowns provoked by weather conditions, political riots, special events, natural disaster issues, or the recent COVID-19 pandemic create a need for tools to manage public transport demand and supply o keep users circulating in an efficient, convenient and safe manner. Our work develops a simulation tool of the operations of a public transport system using smart card, GTFS and census data to evaluate the impacts of different intervention scenarios using the pandemic context as a case study. Using a pre-pandemic baseline scenario, we study the impact of several travel demand and public transport supply measures, focusing the analysis on waiting times and crowding conditions inside vehicles and platforms. As a result, we generate easy-to-analyze visual outputs that facilitate prioritizing actions at the metropolitan and district level, identifying where and when waiting times and crowding conditions would exceed certain thresholds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1