新冠肺炎患者的深度生存分析及其临床变量

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Journal of Translational Engineering in Health and Medicine-Jtehm Pub Date : 2023-03-14 DOI:10.1109/JTEHM.2023.3256966
Ahmad Chaddad;Lama Hassan;Yousef Katib;Ahmed Bouridane
{"title":"新冠肺炎患者的深度生存分析及其临床变量","authors":"Ahmad Chaddad;Lama Hassan;Yousef Katib;Ahmed Bouridane","doi":"10.1109/JTEHM.2023.3256966","DOIUrl":null,"url":null,"abstract":"Objective: Millions of people have been affected by coronavirus disease 2019 (COVID-19), which has caused millions of deaths around the world. Artificial intelligence (AI) plays an increasing role in all areas of patient care, including prognostics. This paper proposes a novel predictive model based on one dimensional convolutional neural networks (1D CNN) to use clinical variables in predicting the survival outcome of COVID-19 patients. Methods and procedures: We have considered two scenarios for survival analysis, 1) uni-variate analysis using the Log-rank test and Kaplan-Meier estimator and 2) combining all clinical variables (\n<inline-formula> <tex-math>$n$ </tex-math></inline-formula>\n=44) for predicting the short-term from long-term survival. We considered the random forest (RF) model as a baseline model, comparing to our proposed 1D CNN in predicting survival groups. Results: Our experiments using the univariate analysis show that nine clinical variables are significantly associated with the survival outcome with corrected p < 0.05. Our approach of 1D CNN shows a significant improvement in performance metrics compared to the RF and the state-of-the-art techniques (i.e., 1D CNN) in predicting the survival group of patients with COVID-19. Conclusion: Our model has been tested using clinical variables, where the performance is found promising. The 1D CNN model could be a useful tool for detecting the risk of mortality and developing treatment plans in a timely manner. Clinical impact: The findings indicate that using both Heparin and Exnox for treatment is typically the most useful factor in predicting a patient’s chances of survival from COVID-19. Moreover, our predictive model shows that the combination of AI and clinical data can be applied to point-of-care services through fast-learning healthcare systems.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"11 ","pages":"223-231"},"PeriodicalIF":3.7000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10068502","citationCount":"0","resultStr":"{\"title\":\"Deep Survival Analysis With Clinical Variables for COVID-19\",\"authors\":\"Ahmad Chaddad;Lama Hassan;Yousef Katib;Ahmed Bouridane\",\"doi\":\"10.1109/JTEHM.2023.3256966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: Millions of people have been affected by coronavirus disease 2019 (COVID-19), which has caused millions of deaths around the world. Artificial intelligence (AI) plays an increasing role in all areas of patient care, including prognostics. This paper proposes a novel predictive model based on one dimensional convolutional neural networks (1D CNN) to use clinical variables in predicting the survival outcome of COVID-19 patients. Methods and procedures: We have considered two scenarios for survival analysis, 1) uni-variate analysis using the Log-rank test and Kaplan-Meier estimator and 2) combining all clinical variables (\\n<inline-formula> <tex-math>$n$ </tex-math></inline-formula>\\n=44) for predicting the short-term from long-term survival. We considered the random forest (RF) model as a baseline model, comparing to our proposed 1D CNN in predicting survival groups. Results: Our experiments using the univariate analysis show that nine clinical variables are significantly associated with the survival outcome with corrected p < 0.05. Our approach of 1D CNN shows a significant improvement in performance metrics compared to the RF and the state-of-the-art techniques (i.e., 1D CNN) in predicting the survival group of patients with COVID-19. Conclusion: Our model has been tested using clinical variables, where the performance is found promising. The 1D CNN model could be a useful tool for detecting the risk of mortality and developing treatment plans in a timely manner. Clinical impact: The findings indicate that using both Heparin and Exnox for treatment is typically the most useful factor in predicting a patient’s chances of survival from COVID-19. Moreover, our predictive model shows that the combination of AI and clinical data can be applied to point-of-care services through fast-learning healthcare systems.\",\"PeriodicalId\":54255,\"journal\":{\"name\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"volume\":\"11 \",\"pages\":\"223-231\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10068502\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10068502/\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10068502/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目标:数百万人受到2019冠状病毒病(新冠肺炎)的影响,该病已在世界各地造成数百万人死亡。人工智能(AI)在包括预后在内的所有患者护理领域发挥着越来越大的作用。本文提出了一种基于一维卷积神经网络(1D CNN)的新型预测模型,利用临床变量预测新冠肺炎患者的生存结果。方法和程序:我们考虑了两种生存分析方案,1)使用Log-rank检验和Kaplan-Meier估计量的单变量分析,2)结合所有临床变量($n$=44)预测短期和长期生存率。我们将随机森林(RF)模型视为基线模型,与我们提出的1D CNN在预测生存组方面进行比较。结果:我们使用单变量分析的实验表明,9个临床变量与生存结果显著相关,校正后p<0.05。与RF和最先进的技术(即1D CNN)相比,我们的1D CNN方法在预测新冠肺炎患者生存组方面的性能指标有了显著改进。结论:我们的模型已经使用临床变量进行了测试,发现其性能很有希望。1D CNN模型可能是一种有用的工具,用于检测死亡风险并及时制定治疗计划。临床影响:研究结果表明,使用肝素和Exnox治疗通常是预测患者从新冠肺炎中存活机会的最有用因素。此外,我们的预测模型表明,人工智能和临床数据的结合可以通过快速学习的医疗保健系统应用于护理点服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Survival Analysis With Clinical Variables for COVID-19
Objective: Millions of people have been affected by coronavirus disease 2019 (COVID-19), which has caused millions of deaths around the world. Artificial intelligence (AI) plays an increasing role in all areas of patient care, including prognostics. This paper proposes a novel predictive model based on one dimensional convolutional neural networks (1D CNN) to use clinical variables in predicting the survival outcome of COVID-19 patients. Methods and procedures: We have considered two scenarios for survival analysis, 1) uni-variate analysis using the Log-rank test and Kaplan-Meier estimator and 2) combining all clinical variables ( $n$ =44) for predicting the short-term from long-term survival. We considered the random forest (RF) model as a baseline model, comparing to our proposed 1D CNN in predicting survival groups. Results: Our experiments using the univariate analysis show that nine clinical variables are significantly associated with the survival outcome with corrected p < 0.05. Our approach of 1D CNN shows a significant improvement in performance metrics compared to the RF and the state-of-the-art techniques (i.e., 1D CNN) in predicting the survival group of patients with COVID-19. Conclusion: Our model has been tested using clinical variables, where the performance is found promising. The 1D CNN model could be a useful tool for detecting the risk of mortality and developing treatment plans in a timely manner. Clinical impact: The findings indicate that using both Heparin and Exnox for treatment is typically the most useful factor in predicting a patient’s chances of survival from COVID-19. Moreover, our predictive model shows that the combination of AI and clinical data can be applied to point-of-care services through fast-learning healthcare systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.40
自引率
2.90%
发文量
65
审稿时长
27 weeks
期刊介绍: The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.
期刊最新文献
Elevating Patient Care With Deep Learning: High-Resolution Cervical Auscultation Signals for Swallowing Kinematic Analysis in Nasogastric Tube Patients Non-Contact Monitoring of Inhalation-Exhalation (I:E) Ratio in Non-Ventilated Subjects A Multi-Task Based Deep Learning Framework With Landmark Detection for MRI Couinaud Segmentation Video-Based Respiratory Rate Estimation for Infants in the NICU A Novel Chest-Based PPG Measurement System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1