Ahmad Chaddad;Lama Hassan;Yousef Katib;Ahmed Bouridane
{"title":"新冠肺炎患者的深度生存分析及其临床变量","authors":"Ahmad Chaddad;Lama Hassan;Yousef Katib;Ahmed Bouridane","doi":"10.1109/JTEHM.2023.3256966","DOIUrl":null,"url":null,"abstract":"Objective: Millions of people have been affected by coronavirus disease 2019 (COVID-19), which has caused millions of deaths around the world. Artificial intelligence (AI) plays an increasing role in all areas of patient care, including prognostics. This paper proposes a novel predictive model based on one dimensional convolutional neural networks (1D CNN) to use clinical variables in predicting the survival outcome of COVID-19 patients. Methods and procedures: We have considered two scenarios for survival analysis, 1) uni-variate analysis using the Log-rank test and Kaplan-Meier estimator and 2) combining all clinical variables (\n<inline-formula> <tex-math>$n$ </tex-math></inline-formula>\n=44) for predicting the short-term from long-term survival. We considered the random forest (RF) model as a baseline model, comparing to our proposed 1D CNN in predicting survival groups. Results: Our experiments using the univariate analysis show that nine clinical variables are significantly associated with the survival outcome with corrected p < 0.05. Our approach of 1D CNN shows a significant improvement in performance metrics compared to the RF and the state-of-the-art techniques (i.e., 1D CNN) in predicting the survival group of patients with COVID-19. Conclusion: Our model has been tested using clinical variables, where the performance is found promising. The 1D CNN model could be a useful tool for detecting the risk of mortality and developing treatment plans in a timely manner. Clinical impact: The findings indicate that using both Heparin and Exnox for treatment is typically the most useful factor in predicting a patient’s chances of survival from COVID-19. Moreover, our predictive model shows that the combination of AI and clinical data can be applied to point-of-care services through fast-learning healthcare systems.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"11 ","pages":"223-231"},"PeriodicalIF":3.7000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10068502","citationCount":"0","resultStr":"{\"title\":\"Deep Survival Analysis With Clinical Variables for COVID-19\",\"authors\":\"Ahmad Chaddad;Lama Hassan;Yousef Katib;Ahmed Bouridane\",\"doi\":\"10.1109/JTEHM.2023.3256966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: Millions of people have been affected by coronavirus disease 2019 (COVID-19), which has caused millions of deaths around the world. Artificial intelligence (AI) plays an increasing role in all areas of patient care, including prognostics. This paper proposes a novel predictive model based on one dimensional convolutional neural networks (1D CNN) to use clinical variables in predicting the survival outcome of COVID-19 patients. Methods and procedures: We have considered two scenarios for survival analysis, 1) uni-variate analysis using the Log-rank test and Kaplan-Meier estimator and 2) combining all clinical variables (\\n<inline-formula> <tex-math>$n$ </tex-math></inline-formula>\\n=44) for predicting the short-term from long-term survival. We considered the random forest (RF) model as a baseline model, comparing to our proposed 1D CNN in predicting survival groups. Results: Our experiments using the univariate analysis show that nine clinical variables are significantly associated with the survival outcome with corrected p < 0.05. Our approach of 1D CNN shows a significant improvement in performance metrics compared to the RF and the state-of-the-art techniques (i.e., 1D CNN) in predicting the survival group of patients with COVID-19. Conclusion: Our model has been tested using clinical variables, where the performance is found promising. The 1D CNN model could be a useful tool for detecting the risk of mortality and developing treatment plans in a timely manner. Clinical impact: The findings indicate that using both Heparin and Exnox for treatment is typically the most useful factor in predicting a patient’s chances of survival from COVID-19. Moreover, our predictive model shows that the combination of AI and clinical data can be applied to point-of-care services through fast-learning healthcare systems.\",\"PeriodicalId\":54255,\"journal\":{\"name\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"volume\":\"11 \",\"pages\":\"223-231\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10068502\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10068502/\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10068502/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Deep Survival Analysis With Clinical Variables for COVID-19
Objective: Millions of people have been affected by coronavirus disease 2019 (COVID-19), which has caused millions of deaths around the world. Artificial intelligence (AI) plays an increasing role in all areas of patient care, including prognostics. This paper proposes a novel predictive model based on one dimensional convolutional neural networks (1D CNN) to use clinical variables in predicting the survival outcome of COVID-19 patients. Methods and procedures: We have considered two scenarios for survival analysis, 1) uni-variate analysis using the Log-rank test and Kaplan-Meier estimator and 2) combining all clinical variables (
$n$
=44) for predicting the short-term from long-term survival. We considered the random forest (RF) model as a baseline model, comparing to our proposed 1D CNN in predicting survival groups. Results: Our experiments using the univariate analysis show that nine clinical variables are significantly associated with the survival outcome with corrected p < 0.05. Our approach of 1D CNN shows a significant improvement in performance metrics compared to the RF and the state-of-the-art techniques (i.e., 1D CNN) in predicting the survival group of patients with COVID-19. Conclusion: Our model has been tested using clinical variables, where the performance is found promising. The 1D CNN model could be a useful tool for detecting the risk of mortality and developing treatment plans in a timely manner. Clinical impact: The findings indicate that using both Heparin and Exnox for treatment is typically the most useful factor in predicting a patient’s chances of survival from COVID-19. Moreover, our predictive model shows that the combination of AI and clinical data can be applied to point-of-care services through fast-learning healthcare systems.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.