Yan Yan , Jiaqiao Zhang , Guangzhao Li, Weihao Zhou, Zhonghua Ni
{"title":"无衬里V型低温压缩储氢容器的研究进展:树脂增韧和隔氢性能控制","authors":"Yan Yan , Jiaqiao Zhang , Guangzhao Li, Weihao Zhou, Zhonghua Ni","doi":"10.1016/j.rser.2023.114009","DOIUrl":null,"url":null,"abstract":"<div><p>Cryo-compressed hydrogen (CcH<sub>2</sub>) storage has significant advantages such as long dormancy, high safety factor, and rapid filling; thus, it is suitable for the energy supply of heavy-duty vehicles. Carbon fiber composites for state-of-the-art linerless type V CcH<sub>2</sub> storage vessels should have both pressure-bearing and hydrogen-barrier properties. However, these properties are difficult to achieve under cryogenic temperatures and high pressures. Resin failure is the main reason behind the degradation of cryogenic properties. In this work, methods to achieve resin toughening and hydrogen-barrier control are reviewed. Comparisons indicate that thermoplastics are more suitable for resin toughening than other materials, and that interlayer films can effectively block hydrogen permeation. Resins with added nanomaterials not only stop the propagation of microcracks but also generate tortuous paths within the composites to inhibit hydrogen permeation. However, the issues of temperature-induced strain and state regulation of nanomaterials must be further addressed. In this study, a resin film modified with toughening agents and nanomaterials was also designed. The film was then placed between carbon fiber plies. Hot-pressing and surface treatment of the resin film were performed to enhance the orientation of the nanomaterials and interlayer adhesion force. The proposed composite may be useful in the manufacture of linerless Type V CcH<sub>2</sub> storage vessels.</p></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"189 ","pages":"Article 114009"},"PeriodicalIF":16.3000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364032123008675/pdfft?md5=5f78d0dbef2fdb8dd33f3ee1c93cf1ba&pid=1-s2.0-S1364032123008675-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Review on linerless type V cryo-compressed hydrogen storage vessels: Resin toughening and hydrogen-barrier properties control\",\"authors\":\"Yan Yan , Jiaqiao Zhang , Guangzhao Li, Weihao Zhou, Zhonghua Ni\",\"doi\":\"10.1016/j.rser.2023.114009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cryo-compressed hydrogen (CcH<sub>2</sub>) storage has significant advantages such as long dormancy, high safety factor, and rapid filling; thus, it is suitable for the energy supply of heavy-duty vehicles. Carbon fiber composites for state-of-the-art linerless type V CcH<sub>2</sub> storage vessels should have both pressure-bearing and hydrogen-barrier properties. However, these properties are difficult to achieve under cryogenic temperatures and high pressures. Resin failure is the main reason behind the degradation of cryogenic properties. In this work, methods to achieve resin toughening and hydrogen-barrier control are reviewed. Comparisons indicate that thermoplastics are more suitable for resin toughening than other materials, and that interlayer films can effectively block hydrogen permeation. Resins with added nanomaterials not only stop the propagation of microcracks but also generate tortuous paths within the composites to inhibit hydrogen permeation. However, the issues of temperature-induced strain and state regulation of nanomaterials must be further addressed. In this study, a resin film modified with toughening agents and nanomaterials was also designed. The film was then placed between carbon fiber plies. Hot-pressing and surface treatment of the resin film were performed to enhance the orientation of the nanomaterials and interlayer adhesion force. The proposed composite may be useful in the manufacture of linerless Type V CcH<sub>2</sub> storage vessels.</p></div>\",\"PeriodicalId\":418,\"journal\":{\"name\":\"Renewable and Sustainable Energy Reviews\",\"volume\":\"189 \",\"pages\":\"Article 114009\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1364032123008675/pdfft?md5=5f78d0dbef2fdb8dd33f3ee1c93cf1ba&pid=1-s2.0-S1364032123008675-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Reviews\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364032123008675\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032123008675","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Review on linerless type V cryo-compressed hydrogen storage vessels: Resin toughening and hydrogen-barrier properties control
Cryo-compressed hydrogen (CcH2) storage has significant advantages such as long dormancy, high safety factor, and rapid filling; thus, it is suitable for the energy supply of heavy-duty vehicles. Carbon fiber composites for state-of-the-art linerless type V CcH2 storage vessels should have both pressure-bearing and hydrogen-barrier properties. However, these properties are difficult to achieve under cryogenic temperatures and high pressures. Resin failure is the main reason behind the degradation of cryogenic properties. In this work, methods to achieve resin toughening and hydrogen-barrier control are reviewed. Comparisons indicate that thermoplastics are more suitable for resin toughening than other materials, and that interlayer films can effectively block hydrogen permeation. Resins with added nanomaterials not only stop the propagation of microcracks but also generate tortuous paths within the composites to inhibit hydrogen permeation. However, the issues of temperature-induced strain and state regulation of nanomaterials must be further addressed. In this study, a resin film modified with toughening agents and nanomaterials was also designed. The film was then placed between carbon fiber plies. Hot-pressing and surface treatment of the resin film were performed to enhance the orientation of the nanomaterials and interlayer adhesion force. The proposed composite may be useful in the manufacture of linerless Type V CcH2 storage vessels.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.