利用社交媒体网络关系预测俄罗斯抗议活动的预期参与情况

Q1 Social Sciences Online Social Networks and Media Pub Date : 2023-09-01 DOI:10.1016/j.osnem.2023.100273
Elizaveta Kopacheva , Masoud Fatemi , Kostiantyn Kucher
{"title":"利用社交媒体网络关系预测俄罗斯抗议活动的预期参与情况","authors":"Elizaveta Kopacheva ,&nbsp;Masoud Fatemi ,&nbsp;Kostiantyn Kucher","doi":"10.1016/j.osnem.2023.100273","DOIUrl":null,"url":null,"abstract":"<div><p>Previous research has highlighted the importance of network structures in information diffusion on social media. In this study, we explore the role of an individual’s social network structure in predicting publicly announced intention of protest participation. Using the case of ecological protests in Russia and applying machine learning to publicly-available VKontakte data, we classify users into protesters and non-protesters. We have found that personal social networks have a high predictive power allowing user classification with an accuracy of 81%. Meanwhile, using all public VKontakte data, including memberships in activist groups and friendship ties to protesters, we were able to classify users into protesters and non-protesters with a higher accuracy of 96%. Our study contributes to the political-participation literature by demonstrating the importance of personal social networks in predicting protest participation. Our results suggest that in some cases, the likelihood of participating in protests can be significantly influenced by elements of a personal-network structure, inter alia, network density and size. Further explanatory research should be done to explore the mechanisms underlying these relationships.</p></div>","PeriodicalId":52228,"journal":{"name":"Online Social Networks and Media","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468696423000320/pdfft?md5=0b82a674e27381ee51954b364a215f03&pid=1-s2.0-S2468696423000320-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Using social-media-network ties for predicting intended protest participation in Russia\",\"authors\":\"Elizaveta Kopacheva ,&nbsp;Masoud Fatemi ,&nbsp;Kostiantyn Kucher\",\"doi\":\"10.1016/j.osnem.2023.100273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Previous research has highlighted the importance of network structures in information diffusion on social media. In this study, we explore the role of an individual’s social network structure in predicting publicly announced intention of protest participation. Using the case of ecological protests in Russia and applying machine learning to publicly-available VKontakte data, we classify users into protesters and non-protesters. We have found that personal social networks have a high predictive power allowing user classification with an accuracy of 81%. Meanwhile, using all public VKontakte data, including memberships in activist groups and friendship ties to protesters, we were able to classify users into protesters and non-protesters with a higher accuracy of 96%. Our study contributes to the political-participation literature by demonstrating the importance of personal social networks in predicting protest participation. Our results suggest that in some cases, the likelihood of participating in protests can be significantly influenced by elements of a personal-network structure, inter alia, network density and size. Further explanatory research should be done to explore the mechanisms underlying these relationships.</p></div>\",\"PeriodicalId\":52228,\"journal\":{\"name\":\"Online Social Networks and Media\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468696423000320/pdfft?md5=0b82a674e27381ee51954b364a215f03&pid=1-s2.0-S2468696423000320-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Online Social Networks and Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468696423000320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online Social Networks and Media","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468696423000320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

先前的研究强调了网络结构在社交媒体上信息传播中的重要性。在本研究中,我们探讨了个人的社会网络结构在预测公开宣布的抗议参与意图中的作用。以俄罗斯的生态抗议为例,并将机器学习应用于公开的VKontakte数据,我们将用户分为抗议者和非抗议者。我们发现,个人社交网络具有很高的预测能力,允许用户分类的准确率达到81%。同时,使用所有VKontakte的公开数据,包括激进组织的成员和与抗议者的友谊关系,我们能够将用户分为抗议者和非抗议者,准确率高达96%。我们的研究通过证明个人社会网络在预测抗议参与方面的重要性,为政治参与文献做出了贡献。我们的研究结果表明,在某些情况下,参与抗议的可能性会受到个人网络结构要素的显著影响,尤其是网络密度和规模。应该做进一步的解释性研究来探索这些关系背后的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using social-media-network ties for predicting intended protest participation in Russia

Previous research has highlighted the importance of network structures in information diffusion on social media. In this study, we explore the role of an individual’s social network structure in predicting publicly announced intention of protest participation. Using the case of ecological protests in Russia and applying machine learning to publicly-available VKontakte data, we classify users into protesters and non-protesters. We have found that personal social networks have a high predictive power allowing user classification with an accuracy of 81%. Meanwhile, using all public VKontakte data, including memberships in activist groups and friendship ties to protesters, we were able to classify users into protesters and non-protesters with a higher accuracy of 96%. Our study contributes to the political-participation literature by demonstrating the importance of personal social networks in predicting protest participation. Our results suggest that in some cases, the likelihood of participating in protests can be significantly influenced by elements of a personal-network structure, inter alia, network density and size. Further explanatory research should be done to explore the mechanisms underlying these relationships.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Online Social Networks and Media
Online Social Networks and Media Social Sciences-Communication
CiteScore
10.60
自引率
0.00%
发文量
32
审稿时长
44 days
期刊最新文献
How does user-generated content on Social Media affect stock predictions? A case study on GameStop Measuring centralization of online platforms through size and interconnection of communities Crowdsourcing the Mitigation of disinformation and misinformation: The case of spontaneous community-based moderation on Reddit GASCOM: Graph-based Attentive Semantic Context Modeling for Online Conversation Understanding The influence of coordinated behavior on toxicity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1