Motonobu Tomoda , Hiroyuki Matsuo , Osamu Matsuda , Roberto Li Voti , Oliver B. Wright
{"title":"皮秒声应变脉冲的可见光自动角度扫描探测层析成像重建","authors":"Motonobu Tomoda , Hiroyuki Matsuo , Osamu Matsuda , Roberto Li Voti , Oliver B. Wright","doi":"10.1016/j.pacs.2023.100567","DOIUrl":null,"url":null,"abstract":"<div><p>By means of an ultrafast optical technique, picosecond acoustic strain pulses in a transparent medium are tomographically visualized at GHz frequencies. The strain distribution in BK7 glass is reconstructed from time-domain reflectivity changes of 415-nm probe light as a function of the optical incidence angle with 1 ps temporal and 120 nm spatial resolutions, enabled by automated angle scanning. The latter resolution is achieved owing to the commensurate acoustic wavelength. Applications include imaging strain, carrier and temperature distributions on ultrashort timescales.</p></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"34 ","pages":"Article 100567"},"PeriodicalIF":7.1000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213597923001209/pdfft?md5=ba7fbd88a4323775dde8978ecb247bd0&pid=1-s2.0-S2213597923001209-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Tomographic reconstruction of picosecond acoustic strain pulses using automated angle-scan probing with visible light\",\"authors\":\"Motonobu Tomoda , Hiroyuki Matsuo , Osamu Matsuda , Roberto Li Voti , Oliver B. Wright\",\"doi\":\"10.1016/j.pacs.2023.100567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>By means of an ultrafast optical technique, picosecond acoustic strain pulses in a transparent medium are tomographically visualized at GHz frequencies. The strain distribution in BK7 glass is reconstructed from time-domain reflectivity changes of 415-nm probe light as a function of the optical incidence angle with 1 ps temporal and 120 nm spatial resolutions, enabled by automated angle scanning. The latter resolution is achieved owing to the commensurate acoustic wavelength. Applications include imaging strain, carrier and temperature distributions on ultrashort timescales.</p></div>\",\"PeriodicalId\":56025,\"journal\":{\"name\":\"Photoacoustics\",\"volume\":\"34 \",\"pages\":\"Article 100567\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2023-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213597923001209/pdfft?md5=ba7fbd88a4323775dde8978ecb247bd0&pid=1-s2.0-S2213597923001209-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photoacoustics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213597923001209\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597923001209","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Tomographic reconstruction of picosecond acoustic strain pulses using automated angle-scan probing with visible light
By means of an ultrafast optical technique, picosecond acoustic strain pulses in a transparent medium are tomographically visualized at GHz frequencies. The strain distribution in BK7 glass is reconstructed from time-domain reflectivity changes of 415-nm probe light as a function of the optical incidence angle with 1 ps temporal and 120 nm spatial resolutions, enabled by automated angle scanning. The latter resolution is achieved owing to the commensurate acoustic wavelength. Applications include imaging strain, carrier and temperature distributions on ultrashort timescales.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.