Haiyan Zheng, Michael J Grayling, Pavel Mozgunov, Thomas Jaki, James M S Wason
{"title":"篮子试验中的贝叶斯样本量确定——借用子集之间的信息。","authors":"Haiyan Zheng, Michael J Grayling, Pavel Mozgunov, Thomas Jaki, James M S Wason","doi":"10.1093/biostatistics/kxac033","DOIUrl":null,"url":null,"abstract":"<p><p>Basket trials are increasingly used for the simultaneous evaluation of a new treatment in various patient subgroups under one overarching protocol. We propose a Bayesian approach to sample size determination in basket trials that permit borrowing of information between commensurate subsets. Specifically, we consider a randomized basket trial design where patients are randomly assigned to the new treatment or control within each trial subset (\"subtrial\" for short). Closed-form sample size formulae are derived to ensure that each subtrial has a specified chance of correctly deciding whether the new treatment is superior to or not better than the control by some clinically relevant difference. Given prespecified levels of pairwise (in)commensurability, the subtrial sample sizes are solved simultaneously. The proposed Bayesian approach resembles the frequentist formulation of the problem in yielding comparable sample sizes for circumstances of no borrowing. When borrowing is enabled between commensurate subtrials, a considerably smaller trial sample size is required compared to the widely implemented approach of no borrowing. We illustrate the use of our sample size formulae with two examples based on real basket trials. A comprehensive simulation study further shows that the proposed methodology can maintain the true positive and false positive rates at desired levels.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bayesian sample size determination in basket trials borrowing information between subsets.\",\"authors\":\"Haiyan Zheng, Michael J Grayling, Pavel Mozgunov, Thomas Jaki, James M S Wason\",\"doi\":\"10.1093/biostatistics/kxac033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Basket trials are increasingly used for the simultaneous evaluation of a new treatment in various patient subgroups under one overarching protocol. We propose a Bayesian approach to sample size determination in basket trials that permit borrowing of information between commensurate subsets. Specifically, we consider a randomized basket trial design where patients are randomly assigned to the new treatment or control within each trial subset (\\\"subtrial\\\" for short). Closed-form sample size formulae are derived to ensure that each subtrial has a specified chance of correctly deciding whether the new treatment is superior to or not better than the control by some clinically relevant difference. Given prespecified levels of pairwise (in)commensurability, the subtrial sample sizes are solved simultaneously. The proposed Bayesian approach resembles the frequentist formulation of the problem in yielding comparable sample sizes for circumstances of no borrowing. When borrowing is enabled between commensurate subtrials, a considerably smaller trial sample size is required compared to the widely implemented approach of no borrowing. We illustrate the use of our sample size formulae with two examples based on real basket trials. A comprehensive simulation study further shows that the proposed methodology can maintain the true positive and false positive rates at desired levels.</p>\",\"PeriodicalId\":55357,\"journal\":{\"name\":\"Biostatistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxac033\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxac033","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Bayesian sample size determination in basket trials borrowing information between subsets.
Basket trials are increasingly used for the simultaneous evaluation of a new treatment in various patient subgroups under one overarching protocol. We propose a Bayesian approach to sample size determination in basket trials that permit borrowing of information between commensurate subsets. Specifically, we consider a randomized basket trial design where patients are randomly assigned to the new treatment or control within each trial subset ("subtrial" for short). Closed-form sample size formulae are derived to ensure that each subtrial has a specified chance of correctly deciding whether the new treatment is superior to or not better than the control by some clinically relevant difference. Given prespecified levels of pairwise (in)commensurability, the subtrial sample sizes are solved simultaneously. The proposed Bayesian approach resembles the frequentist formulation of the problem in yielding comparable sample sizes for circumstances of no borrowing. When borrowing is enabled between commensurate subtrials, a considerably smaller trial sample size is required compared to the widely implemented approach of no borrowing. We illustrate the use of our sample size formulae with two examples based on real basket trials. A comprehensive simulation study further shows that the proposed methodology can maintain the true positive and false positive rates at desired levels.
期刊介绍:
Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.