大蒜(Allium sativum L.)种质对耐寒性响应的多变量分析

Jalil Ahmad , Haiping Wang , Jiangping Song , Shamim Umer , Xiaohui Zhang , Wenlong Yang , Xixiang Li
{"title":"大蒜(Allium sativum L.)种质对耐寒性响应的多变量分析","authors":"Jalil Ahmad ,&nbsp;Haiping Wang ,&nbsp;Jiangping Song ,&nbsp;Shamim Umer ,&nbsp;Xiaohui Zhang ,&nbsp;Wenlong Yang ,&nbsp;Xixiang Li","doi":"10.1016/j.cropd.2023.100042","DOIUrl":null,"url":null,"abstract":"<div><p>Low temperature is a major environmental constraint that limits crop productivity. In this investigation, 256 diverse garlic germplasm were tested for their cold tolerance at the seedling stage by being exposed to natural low-temperature stress −10∼-15 ​°C for the lowest at night for eight days. Several plant development indicators, as well as the cold index (CI), were studied. The findings showed a significant range of CI among these accessions, ranging from 16.98 to 70.38. All germplasms were divided into five groups according to their CI and different grades of tolerance to low-temperature stress. Four highly tolerant and eight low temperature-tolerant germplasm were screened out. Multivariate analysis of the acquired phenomic data using principal component analysis (PCA) addressed sufficient variability, i.e., 70.5% revealed a significant influence of low-temperature stress on growth and bulb attributes. PCA and cluster analysis classified accessions into three groups representing high diversity, providing feasibility for their use in breeding programs. In many phenotypic variables, different germplasm responded differently to low-temperature stress. Furthermore, an exceptionally significantly negative correlation was observed between CI and agronomic traits (PH, LL, LW, RHL) and initiation of bulb traits (Bulb height, width, weight)<em>.</em> This study provides a sustainable solution and useful resources for the garlic low temperature tolerant genetic enhancement.</p></div>","PeriodicalId":100341,"journal":{"name":"Crop Design","volume":"2 2","pages":"Article 100042"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772899423000204/pdfft?md5=ccad90c74f344e0e87074095f6c0efcd&pid=1-s2.0-S2772899423000204-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multivariate analysis of garlic (Allium sativum L.) germplasm in response to cold tolerance regimes\",\"authors\":\"Jalil Ahmad ,&nbsp;Haiping Wang ,&nbsp;Jiangping Song ,&nbsp;Shamim Umer ,&nbsp;Xiaohui Zhang ,&nbsp;Wenlong Yang ,&nbsp;Xixiang Li\",\"doi\":\"10.1016/j.cropd.2023.100042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Low temperature is a major environmental constraint that limits crop productivity. In this investigation, 256 diverse garlic germplasm were tested for their cold tolerance at the seedling stage by being exposed to natural low-temperature stress −10∼-15 ​°C for the lowest at night for eight days. Several plant development indicators, as well as the cold index (CI), were studied. The findings showed a significant range of CI among these accessions, ranging from 16.98 to 70.38. All germplasms were divided into five groups according to their CI and different grades of tolerance to low-temperature stress. Four highly tolerant and eight low temperature-tolerant germplasm were screened out. Multivariate analysis of the acquired phenomic data using principal component analysis (PCA) addressed sufficient variability, i.e., 70.5% revealed a significant influence of low-temperature stress on growth and bulb attributes. PCA and cluster analysis classified accessions into three groups representing high diversity, providing feasibility for their use in breeding programs. In many phenotypic variables, different germplasm responded differently to low-temperature stress. Furthermore, an exceptionally significantly negative correlation was observed between CI and agronomic traits (PH, LL, LW, RHL) and initiation of bulb traits (Bulb height, width, weight)<em>.</em> This study provides a sustainable solution and useful resources for the garlic low temperature tolerant genetic enhancement.</p></div>\",\"PeriodicalId\":100341,\"journal\":{\"name\":\"Crop Design\",\"volume\":\"2 2\",\"pages\":\"Article 100042\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772899423000204/pdfft?md5=ccad90c74f344e0e87074095f6c0efcd&pid=1-s2.0-S2772899423000204-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772899423000204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Design","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772899423000204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

低温是限制作物产量的主要环境制约因素。在本研究中,256种不同的大蒜种质在苗期通过暴露在−10 ~ -15°C的自然低温胁迫下(最低温度在夜间)8天,测试了它们的耐冷性。对几种植物发育指标及冷指数进行了研究。结果表明,这些材料的CI范围在16.98 ~ 70.38之间。根据CI和耐低温胁迫的不同程度,将所有材料分为5组。筛选出4个高耐、8个耐低温种质。利用主成分分析(PCA)对获得的性状数据进行多变量分析,发现低温胁迫对植株生长和鳞茎性状有显著影响,变异率为70.5%。主成分分析和聚类分析将其划分为具有较高多样性的3个类群,为其在育种规划中的应用提供了可行性。在许多表型变量中,不同种质对低温胁迫的响应不同。此外,CI与农艺性状(PH、LL、LW、RHL)和球茎形成性状(球茎高、球茎宽、球茎重)呈极显著负相关。本研究为大蒜耐低温基因增强提供了可持续的解决方案和有用的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multivariate analysis of garlic (Allium sativum L.) germplasm in response to cold tolerance regimes

Low temperature is a major environmental constraint that limits crop productivity. In this investigation, 256 diverse garlic germplasm were tested for their cold tolerance at the seedling stage by being exposed to natural low-temperature stress −10∼-15 ​°C for the lowest at night for eight days. Several plant development indicators, as well as the cold index (CI), were studied. The findings showed a significant range of CI among these accessions, ranging from 16.98 to 70.38. All germplasms were divided into five groups according to their CI and different grades of tolerance to low-temperature stress. Four highly tolerant and eight low temperature-tolerant germplasm were screened out. Multivariate analysis of the acquired phenomic data using principal component analysis (PCA) addressed sufficient variability, i.e., 70.5% revealed a significant influence of low-temperature stress on growth and bulb attributes. PCA and cluster analysis classified accessions into three groups representing high diversity, providing feasibility for their use in breeding programs. In many phenotypic variables, different germplasm responded differently to low-temperature stress. Furthermore, an exceptionally significantly negative correlation was observed between CI and agronomic traits (PH, LL, LW, RHL) and initiation of bulb traits (Bulb height, width, weight). This study provides a sustainable solution and useful resources for the garlic low temperature tolerant genetic enhancement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strategizing pigeonpea for enhancing health-benefitting traits: A path to nutritional advancements Genetic improvement of medicinal and aromatic plant species: Breeding techniques, conservative practices and future prospects Comparative interactomics build the bridges from micromolecules to biological behaviour and morphology Smart farming: Leveraging IoT and deep learning for sustainable tomato cultivation and pest management A novel multi trait genotype ideotype distance index (MGIDI) for genotype selection in plant breeding: Application, prospects, and limitations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1