{"title":"非线性随机开放量子物理中的算子方法","authors":"Sina Khorasani","doi":"10.1016/j.physrep.2023.10.007","DOIUrl":null,"url":null,"abstract":"<div><p>The success of quantum physics in description of various physical interaction phenomena relies primarily on the accuracy of analytical methods used. In quantum mechanics, many of such interactions such as those found in quantum optomechanics and quantum computing have a highly nonlinear nature, which makes their analysis extraordinarily difficult using classical schemes. Typically, modern quantum systems of interest nowadays come with four basic properties: (i) quantumness, (ii) openness, (iii) randomness, and (iv) nonlinearity. The newly introduced method of higher-order operators targets analytical solutions to such systems, and while providing at least mathematically approximate expressions with improved accuracy over the fully linearized schemes, some cases admit exact solutions. Many different applications of this method in quantum and classically nonlinear systems are demonstrated throughout. This review is purposed to provide the reader with ease of access to this recent and well-established operator algebra, while going over a moderate amount of literature review. The reader with basic knowledge of quantum mechanics and quantum noise theory should be able to start using this scheme to his or her own problem of interest.</p></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1046 ","pages":"Pages 1-94"},"PeriodicalIF":23.9000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Operator approach in nonlinear stochastic open quantum physics\",\"authors\":\"Sina Khorasani\",\"doi\":\"10.1016/j.physrep.2023.10.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The success of quantum physics in description of various physical interaction phenomena relies primarily on the accuracy of analytical methods used. In quantum mechanics, many of such interactions such as those found in quantum optomechanics and quantum computing have a highly nonlinear nature, which makes their analysis extraordinarily difficult using classical schemes. Typically, modern quantum systems of interest nowadays come with four basic properties: (i) quantumness, (ii) openness, (iii) randomness, and (iv) nonlinearity. The newly introduced method of higher-order operators targets analytical solutions to such systems, and while providing at least mathematically approximate expressions with improved accuracy over the fully linearized schemes, some cases admit exact solutions. Many different applications of this method in quantum and classically nonlinear systems are demonstrated throughout. This review is purposed to provide the reader with ease of access to this recent and well-established operator algebra, while going over a moderate amount of literature review. The reader with basic knowledge of quantum mechanics and quantum noise theory should be able to start using this scheme to his or her own problem of interest.</p></div>\",\"PeriodicalId\":404,\"journal\":{\"name\":\"Physics Reports\",\"volume\":\"1046 \",\"pages\":\"Pages 1-94\"},\"PeriodicalIF\":23.9000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Reports\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0370157323003514\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Reports","FirstCategoryId":"4","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370157323003514","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Operator approach in nonlinear stochastic open quantum physics
The success of quantum physics in description of various physical interaction phenomena relies primarily on the accuracy of analytical methods used. In quantum mechanics, many of such interactions such as those found in quantum optomechanics and quantum computing have a highly nonlinear nature, which makes their analysis extraordinarily difficult using classical schemes. Typically, modern quantum systems of interest nowadays come with four basic properties: (i) quantumness, (ii) openness, (iii) randomness, and (iv) nonlinearity. The newly introduced method of higher-order operators targets analytical solutions to such systems, and while providing at least mathematically approximate expressions with improved accuracy over the fully linearized schemes, some cases admit exact solutions. Many different applications of this method in quantum and classically nonlinear systems are demonstrated throughout. This review is purposed to provide the reader with ease of access to this recent and well-established operator algebra, while going over a moderate amount of literature review. The reader with basic knowledge of quantum mechanics and quantum noise theory should be able to start using this scheme to his or her own problem of interest.
期刊介绍:
Physics Reports keeps the active physicist up-to-date on developments in a wide range of topics by publishing timely reviews which are more extensive than just literature surveys but normally less than a full monograph. Each report deals with one specific subject and is generally published in a separate volume. These reviews are specialist in nature but contain enough introductory material to make the main points intelligible to a non-specialist. The reader will not only be able to distinguish important developments and trends in physics but will also find a sufficient number of references to the original literature.