{"title":"元素纳米材料的抗菌应用","authors":"Shuang Chai , Yutao Xie , Lihua Yang","doi":"10.1016/j.cossms.2022.101043","DOIUrl":null,"url":null,"abstract":"<div><p><span>The emergence and spread of antimicrobial resistance call for the development of antibacterial substances that may be able to circumvent the resistance mechanisms of bacteria. To this end, intensive research efforts have been directed toward non-antibiotic materials with antibacterial potency. In particular, single-element inorganic nanomaterials have demonstrated promising activity against bacteria, and prominent examples of single-element inorganic nanomaterials include silver (Ag) </span>nanoparticles<span>, 0-, 1- and 2-dimensional carbon nanomaterials, and 2-dimensional black phosphorous (BP) nanosheets. With activity modes distinct from those of commercial antibiotics, these single-element inorganic nanomaterials have demonstrated activity against antibiotic-resistant bacterial strains and may delay the emergence of resistance in bacteria. In this review, we focus on silver (Ag) nanoparticles, 0-, 1- and 2-dimensional carbon nanomaterials, and 2-dimensional black phosphorous (BP) nanosheets, and discuss their antibacterial potency, factors that influence their antibacterial performances, as well as their cytotoxicity to mammalian cells.</span></p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 6","pages":"Article 101043"},"PeriodicalIF":12.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Antibacterial applications of elemental nanomaterials\",\"authors\":\"Shuang Chai , Yutao Xie , Lihua Yang\",\"doi\":\"10.1016/j.cossms.2022.101043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The emergence and spread of antimicrobial resistance call for the development of antibacterial substances that may be able to circumvent the resistance mechanisms of bacteria. To this end, intensive research efforts have been directed toward non-antibiotic materials with antibacterial potency. In particular, single-element inorganic nanomaterials have demonstrated promising activity against bacteria, and prominent examples of single-element inorganic nanomaterials include silver (Ag) </span>nanoparticles<span>, 0-, 1- and 2-dimensional carbon nanomaterials, and 2-dimensional black phosphorous (BP) nanosheets. With activity modes distinct from those of commercial antibiotics, these single-element inorganic nanomaterials have demonstrated activity against antibiotic-resistant bacterial strains and may delay the emergence of resistance in bacteria. In this review, we focus on silver (Ag) nanoparticles, 0-, 1- and 2-dimensional carbon nanomaterials, and 2-dimensional black phosphorous (BP) nanosheets, and discuss their antibacterial potency, factors that influence their antibacterial performances, as well as their cytotoxicity to mammalian cells.</span></p></div>\",\"PeriodicalId\":295,\"journal\":{\"name\":\"Current Opinion in Solid State & Materials Science\",\"volume\":\"26 6\",\"pages\":\"Article 101043\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Solid State & Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359028622000638\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028622000638","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Antibacterial applications of elemental nanomaterials
The emergence and spread of antimicrobial resistance call for the development of antibacterial substances that may be able to circumvent the resistance mechanisms of bacteria. To this end, intensive research efforts have been directed toward non-antibiotic materials with antibacterial potency. In particular, single-element inorganic nanomaterials have demonstrated promising activity against bacteria, and prominent examples of single-element inorganic nanomaterials include silver (Ag) nanoparticles, 0-, 1- and 2-dimensional carbon nanomaterials, and 2-dimensional black phosphorous (BP) nanosheets. With activity modes distinct from those of commercial antibiotics, these single-element inorganic nanomaterials have demonstrated activity against antibiotic-resistant bacterial strains and may delay the emergence of resistance in bacteria. In this review, we focus on silver (Ag) nanoparticles, 0-, 1- and 2-dimensional carbon nanomaterials, and 2-dimensional black phosphorous (BP) nanosheets, and discuss their antibacterial potency, factors that influence their antibacterial performances, as well as their cytotoxicity to mammalian cells.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field