Maria Anikeeva , Maitreyi Sangal , Andrey N. Pravdivtsev , Maryia S. Pravdivtseva , Eva Peschke , Oliver Speck , Jan-Bernd Hövener
{"title":"乙烷的核磁共振成像和测速","authors":"Maria Anikeeva , Maitreyi Sangal , Andrey N. Pravdivtsev , Maryia S. Pravdivtseva , Eva Peschke , Oliver Speck , Jan-Bernd Hövener","doi":"10.1016/j.jmro.2023.100137","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the experimental conditions required for magnetic resonance imaging (MRI) of thermally polarized hydrocarbon gas, focusing on ethane. The nuclear magnetic resonance (NMR) spectra and relaxation properties of ethane were analysed at different pressures in the range from 1.5 to 6 bar at 7 T using <sup>1</sup>H NMR spectroscopy. The spin-lattice relaxation time (T<sub>1</sub>) and spin-spin relaxation time (T<sub>2</sub>) were measured, and their dependence on the pressure was determined, showing that both relaxation times increase with pressure. Using the estimated relaxation times, we adjusted parameters for imaging of static ethane using rapid acquisition with relaxation enhancement (RARE) and fast low-angle shot (FLASH). The signal-to-noise ratio (SNR) of ethane images was evaluated and compared to the calculation for the given range of pressures. Then, we imaged flowing gas using a 2D velocity-encoded pulse sequence, which is usually used for liquid flow studies. The MRI-measured flow rates are compared to those pre-set with a pump, showing good agreement in the slow flow range. Overall, the results provide insights into the feasibility of <sup>1</sup>H MRI for imaging and flow measurements of thermally polarized ethane.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100137"},"PeriodicalIF":2.6240,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666441023000456/pdfft?md5=ee9e2d935852d4ca5b924b20bb456221&pid=1-s2.0-S2666441023000456-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Magnetic resonance imaging and velocimetry of ethane\",\"authors\":\"Maria Anikeeva , Maitreyi Sangal , Andrey N. Pravdivtsev , Maryia S. Pravdivtseva , Eva Peschke , Oliver Speck , Jan-Bernd Hövener\",\"doi\":\"10.1016/j.jmro.2023.100137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the experimental conditions required for magnetic resonance imaging (MRI) of thermally polarized hydrocarbon gas, focusing on ethane. The nuclear magnetic resonance (NMR) spectra and relaxation properties of ethane were analysed at different pressures in the range from 1.5 to 6 bar at 7 T using <sup>1</sup>H NMR spectroscopy. The spin-lattice relaxation time (T<sub>1</sub>) and spin-spin relaxation time (T<sub>2</sub>) were measured, and their dependence on the pressure was determined, showing that both relaxation times increase with pressure. Using the estimated relaxation times, we adjusted parameters for imaging of static ethane using rapid acquisition with relaxation enhancement (RARE) and fast low-angle shot (FLASH). The signal-to-noise ratio (SNR) of ethane images was evaluated and compared to the calculation for the given range of pressures. Then, we imaged flowing gas using a 2D velocity-encoded pulse sequence, which is usually used for liquid flow studies. The MRI-measured flow rates are compared to those pre-set with a pump, showing good agreement in the slow flow range. Overall, the results provide insights into the feasibility of <sup>1</sup>H MRI for imaging and flow measurements of thermally polarized ethane.</p></div>\",\"PeriodicalId\":365,\"journal\":{\"name\":\"Journal of Magnetic Resonance Open\",\"volume\":\"16 \",\"pages\":\"Article 100137\"},\"PeriodicalIF\":2.6240,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666441023000456/pdfft?md5=ee9e2d935852d4ca5b924b20bb456221&pid=1-s2.0-S2666441023000456-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetic Resonance Open\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666441023000456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Open","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666441023000456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
以乙烷为研究对象,研究了热极化烃类气体的磁共振成像(MRI)所需的实验条件。在7 T 1.5 ~ 6 bar的不同压力下,用1H NMR谱分析了乙烷的核磁共振波谱和弛豫特性。测量了自旋-晶格弛豫时间(T1)和自旋-自旋弛豫时间(T2),并确定了它们与压力的依赖关系,结果表明,两者的弛豫时间都随压力的增加而增加。利用估计的弛豫时间,我们调整了静态乙烷成像的参数,采用快速弛豫增强采集(RARE)和快速低角度拍摄(FLASH)。评估了乙烷图像的信噪比(SNR),并与给定压力范围内的计算结果进行了比较。然后,我们使用二维速度编码脉冲序列对流动气体进行成像,这通常用于液体流动研究。mri测量的流量与预先设置的泵流量进行比较,在慢流量范围内显示出良好的一致性。总的来说,这些结果为1H MRI用于热极化乙烷成像和流量测量的可行性提供了见解。
Magnetic resonance imaging and velocimetry of ethane
This study investigates the experimental conditions required for magnetic resonance imaging (MRI) of thermally polarized hydrocarbon gas, focusing on ethane. The nuclear magnetic resonance (NMR) spectra and relaxation properties of ethane were analysed at different pressures in the range from 1.5 to 6 bar at 7 T using 1H NMR spectroscopy. The spin-lattice relaxation time (T1) and spin-spin relaxation time (T2) were measured, and their dependence on the pressure was determined, showing that both relaxation times increase with pressure. Using the estimated relaxation times, we adjusted parameters for imaging of static ethane using rapid acquisition with relaxation enhancement (RARE) and fast low-angle shot (FLASH). The signal-to-noise ratio (SNR) of ethane images was evaluated and compared to the calculation for the given range of pressures. Then, we imaged flowing gas using a 2D velocity-encoded pulse sequence, which is usually used for liquid flow studies. The MRI-measured flow rates are compared to those pre-set with a pump, showing good agreement in the slow flow range. Overall, the results provide insights into the feasibility of 1H MRI for imaging and flow measurements of thermally polarized ethane.