{"title":"他拉波芬钠光动力治疗与抗程序性死亡1抗体增强抗肿瘤免疫。","authors":"Makiko Sasaki, Mamoru Tanaka, Yuki Kojima, Hirotada Nishie, Takaya Shimura, Eiji Kubota, Hiromi Kataoka","doi":"10.1016/j.omto.2022.12.009","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT) is a relatively non-invasive anti-cancer therapy that employs a photosensitizer with a specific wavelength of light irradiation. PDT induces direct cell killing and enhancement effects on tumor immunity, but its underlying mechanism remains unknown. Here, we perform a basic analysis of the anti-tumor effect of talaporfin sodium (TS)-PDT as well as its synergism with the immune checkpoint inhibitor anti-programmed death 1 (anti-PD-1) antibody. We estimate the cell death mechanism induced by TS-PDT and the induction of damage-associated molecular patterns (DAMPs) by TS-PDT <i>in vitro</i>. We establish a syngeneic mouse model of bilateral flank tumors and verify the enhancement of the abscopal effect on the non-irradiated side. TS-PDT induced apoptosis, necrosis, and autophagy-associated cell death <i>in vitro</i>. TS-PDT induced the release and/or expression of DAMPs <i>in vitro</i>. Tumor growth was inhibited in the TS-PDT and anti-PD-1 antibody combination group compared with other single-treatment or non-treatment groups <i>in vivo</i>. In summary, TS-PDT induces the release and/or expression of DAMPs, indicating that it activates innate immunity. PD-1 blockage enhances the anti-tumor immunity induced by TS-PDT. Thus, our results demonstrate that the combination of TS-PDT and anti-PD-1 antibody can potentially be used for anti-tumor therapy.</p>","PeriodicalId":18869,"journal":{"name":"Molecular Therapy Oncolytics","volume":"28 ","pages":"118-131"},"PeriodicalIF":5.3000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867957/pdf/","citationCount":"6","resultStr":"{\"title\":\"Anti-tumor immunity enhancement by photodynamic therapy with talaporfin sodium and anti-programmed death 1 antibody.\",\"authors\":\"Makiko Sasaki, Mamoru Tanaka, Yuki Kojima, Hirotada Nishie, Takaya Shimura, Eiji Kubota, Hiromi Kataoka\",\"doi\":\"10.1016/j.omto.2022.12.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photodynamic therapy (PDT) is a relatively non-invasive anti-cancer therapy that employs a photosensitizer with a specific wavelength of light irradiation. PDT induces direct cell killing and enhancement effects on tumor immunity, but its underlying mechanism remains unknown. Here, we perform a basic analysis of the anti-tumor effect of talaporfin sodium (TS)-PDT as well as its synergism with the immune checkpoint inhibitor anti-programmed death 1 (anti-PD-1) antibody. We estimate the cell death mechanism induced by TS-PDT and the induction of damage-associated molecular patterns (DAMPs) by TS-PDT <i>in vitro</i>. We establish a syngeneic mouse model of bilateral flank tumors and verify the enhancement of the abscopal effect on the non-irradiated side. TS-PDT induced apoptosis, necrosis, and autophagy-associated cell death <i>in vitro</i>. TS-PDT induced the release and/or expression of DAMPs <i>in vitro</i>. Tumor growth was inhibited in the TS-PDT and anti-PD-1 antibody combination group compared with other single-treatment or non-treatment groups <i>in vivo</i>. In summary, TS-PDT induces the release and/or expression of DAMPs, indicating that it activates innate immunity. PD-1 blockage enhances the anti-tumor immunity induced by TS-PDT. Thus, our results demonstrate that the combination of TS-PDT and anti-PD-1 antibody can potentially be used for anti-tumor therapy.</p>\",\"PeriodicalId\":18869,\"journal\":{\"name\":\"Molecular Therapy Oncolytics\",\"volume\":\"28 \",\"pages\":\"118-131\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867957/pdf/\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy Oncolytics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.omto.2022.12.009\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy Oncolytics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omto.2022.12.009","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Anti-tumor immunity enhancement by photodynamic therapy with talaporfin sodium and anti-programmed death 1 antibody.
Photodynamic therapy (PDT) is a relatively non-invasive anti-cancer therapy that employs a photosensitizer with a specific wavelength of light irradiation. PDT induces direct cell killing and enhancement effects on tumor immunity, but its underlying mechanism remains unknown. Here, we perform a basic analysis of the anti-tumor effect of talaporfin sodium (TS)-PDT as well as its synergism with the immune checkpoint inhibitor anti-programmed death 1 (anti-PD-1) antibody. We estimate the cell death mechanism induced by TS-PDT and the induction of damage-associated molecular patterns (DAMPs) by TS-PDT in vitro. We establish a syngeneic mouse model of bilateral flank tumors and verify the enhancement of the abscopal effect on the non-irradiated side. TS-PDT induced apoptosis, necrosis, and autophagy-associated cell death in vitro. TS-PDT induced the release and/or expression of DAMPs in vitro. Tumor growth was inhibited in the TS-PDT and anti-PD-1 antibody combination group compared with other single-treatment or non-treatment groups in vivo. In summary, TS-PDT induces the release and/or expression of DAMPs, indicating that it activates innate immunity. PD-1 blockage enhances the anti-tumor immunity induced by TS-PDT. Thus, our results demonstrate that the combination of TS-PDT and anti-PD-1 antibody can potentially be used for anti-tumor therapy.
期刊介绍:
Molecular Therapy — Oncolytics is an international, online-only, open access journal focusing on the development and clinical testing of viral, cellular, and other biological therapies targeting cancer.