A. Arastehfar , A. Carvalho , J. Houbraken , L. Lombardi , R. Garcia-Rubio , J.D. Jenks , O. Rivero-Menendez , R. Aljohani , I.D. Jacobsen , J. Berman , N. Osherov , M.T. Hedayati , M. Ilkit , D. Armstrong-James , T. Gabaldón , J. Meletiadis , M. Kostrzewa , W. Pan , C. Lass-Flörl , D.S. Perlin , M. Hoenigl
{"title":"烟曲霉和曲霉病:从基础到临床","authors":"A. Arastehfar , A. Carvalho , J. Houbraken , L. Lombardi , R. Garcia-Rubio , J.D. Jenks , O. Rivero-Menendez , R. Aljohani , I.D. Jacobsen , J. Berman , N. Osherov , M.T. Hedayati , M. Ilkit , D. Armstrong-James , T. Gabaldón , J. Meletiadis , M. Kostrzewa , W. Pan , C. Lass-Flörl , D.S. Perlin , M. Hoenigl","doi":"10.1016/j.simyco.2021.100115","DOIUrl":null,"url":null,"abstract":"<div><p>The airborne fungus <em>Aspergillus fumigatus</em> poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant <em>A</em>. <em>fumigatus</em> isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in <em>CYP</em><em>51A</em> are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type <em>CYP</em><em>51A</em> genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant <em>A</em>. <em>fumigatus</em> isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against <em>A</em>. <em>fumigatus</em>. This review paper comprehensively discusses the current clinical challenges caused by <em>A</em>. <em>fumigatus</em> and provides insights on how to address them.</p></div>","PeriodicalId":22036,"journal":{"name":"Studies in Mycology","volume":"100 ","pages":"Article 100115"},"PeriodicalIF":14.1000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.simyco.2021.100115","citationCount":"78","resultStr":"{\"title\":\"Aspergillus fumigatus and aspergillosis: From basics to clinics\",\"authors\":\"A. Arastehfar , A. Carvalho , J. Houbraken , L. Lombardi , R. Garcia-Rubio , J.D. Jenks , O. Rivero-Menendez , R. Aljohani , I.D. Jacobsen , J. Berman , N. Osherov , M.T. Hedayati , M. Ilkit , D. Armstrong-James , T. Gabaldón , J. Meletiadis , M. Kostrzewa , W. Pan , C. Lass-Flörl , D.S. Perlin , M. Hoenigl\",\"doi\":\"10.1016/j.simyco.2021.100115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The airborne fungus <em>Aspergillus fumigatus</em> poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant <em>A</em>. <em>fumigatus</em> isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in <em>CYP</em><em>51A</em> are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type <em>CYP</em><em>51A</em> genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant <em>A</em>. <em>fumigatus</em> isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against <em>A</em>. <em>fumigatus</em>. This review paper comprehensively discusses the current clinical challenges caused by <em>A</em>. <em>fumigatus</em> and provides insights on how to address them.</p></div>\",\"PeriodicalId\":22036,\"journal\":{\"name\":\"Studies in Mycology\",\"volume\":\"100 \",\"pages\":\"Article 100115\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.simyco.2021.100115\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Mycology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166061621000026\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Mycology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166061621000026","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
Aspergillus fumigatus and aspergillosis: From basics to clinics
The airborne fungus Aspergillus fumigatus poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant A. fumigatus isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in CYP51A are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type CYP51A genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant A. fumigatus isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against A. fumigatus. This review paper comprehensively discusses the current clinical challenges caused by A. fumigatus and provides insights on how to address them.
期刊介绍:
The international journal Studies in Mycology focuses on advancing the understanding of filamentous fungi, yeasts, and various aspects of mycology. It publishes comprehensive systematic monographs as well as topical issues covering a wide range of subjects including biotechnology, ecology, molecular biology, pathology, and systematics. This Open-Access journal offers unrestricted access to its content.
Each issue of Studies in Mycology consists of around 5 to 6 papers, either in the form of monographs or special focused topics. Unlike traditional length restrictions, the journal encourages submissions of manuscripts with a minimum of 50 A4 pages in print. This ensures a thorough exploration and presentation of the research findings, maximizing the depth of the published work.