The genus Camarosporidiella is here assessed with respect to its phylogenetic structure and species composition. More than 160 pure cultures from ascospores and conidia of more than 150 fresh collections, mostly from Fabaceae, were prepared as DNA sources. Molecular phylogenetic analyses of a multigene matrix of partial nuSSU-, complete ITS, partial LSU rDNA, and tef1 exon sequences of our isolates and those of previous workers revealed that these markers are insufficient to provide a complete species resolution. From this reduced data matrix, however, we propose synonyms and accept taxa for previously described species, which could not be included in the final phylogenetic tree due to lack of rpb2, tef1 intron and tub2 sequences. The final phylogenetic tree, which was inferred from a combined nuSSU-ITS-LSU-rpb2-tef1-tub2 sequence matrix resolved our isolates into 27 statistically supported phylogenetic species, of which 15 are new. Altogether 34 species are here accepted in Camarosporidiella. Using type studies we stabilise old names, lectotypify Cucurbitaria asparagi, Cucurbitaria caraganae, Cucurbitaria coluteae, Cucurbitaria euonymi, Dichomera elaeagni Hendersonia mori, Sphaeria elongata, Sphaeria laburni Sphaeria spartii and epitypify them as well as Cucurbitaria cytisi, Cucurbitaria retamae and Cucurbitaria steineri to place them in their correct phylogenetic positions and fix their taxonomic concepts. Morphology alone is not suitable to identify these species, and therefore no determinative key to species can be given. However, if hosts are reliably identified, many species can be determined without molecular data. Host images are included with the figures of each fungal species. Taxonomic novelties: New species: Camarosporidiella aceris Jaklitsch & Voglmayr, Camarosporidiella aetnensis Jaklitsch & Voglmayr, Camarosporidiella aragonensis Jaklitsch & Voglmayr, Camarosporidiella asparagicola Jaklitsch & Voglmayr, Camarosporidiella astragalicola Jaklitsch & Voglmayr, Camarosporidiella cretica Jaklitsch & Voglmayr, Camarosporidiella echinosparti Jaklitsch & Voglmayr, Camarosporidiella hesperolaburni Jaklitsch & Voglmayr, Camarosporidiella longipedis Jaklitsch & Voglmayr, Camarosporidiella maroccana Jaklitsch & Voglmayr, Camarosporidiella ononidis Jaklitsch & Voglmayr, Camarosporidiella radiatae Jaklitsch & Voglmayr, Camarosporidiella spartioidis Jaklitsch & Voglmayr, Camarosporidiella sphaerocarpae Jaklitsch & Voglmayr, Camarosporidiella tridentatae Jaklitsch & Voglmayr. New combinations: Camarosporidiella asparagi (Maire) Jaklitsch & Voglmayr, Camarosporidiella caraganae (P. Karst.) Jaklitsch & Voglmayr, Camarosporidiella coluteae (Rabenh.) Jaklitsch & Voglmayr, Camarosporidiella cytisi (Mirza) J
The winemaking industry faces unprecedented challenges due to climate change and market shifts, with profound commercial and socioeconomic repercussions. In response, non-Saccharomyces yeasts have gained attention for their potential to both mitigate these challenges and enhance the complexity of winemaking. This study builds upon our previous cataloguing of 293 non-Saccharomyces yeast species associated with winemaking environments by rigorously analysing 661 publicly available genomes. By employing a bioinformatics pipeline with stringent quality control checkpoints, we annotated and evaluated these genomes, culminating in a robust dataset of 530 non-Saccharomyces proteomes, belonging to 134 species, accessible to the research community. Employing this dataset, we conducted a comparative phylogenomic analysis to decipher metabolic networks related to fermentation capacity and flavor/aroma modulation. Our functional annotation has uncovered distinctive metabolic traits of non-Saccharomyces yeasts, elucidating their unique contributions to enology. Crucially, this work pioneers the identification of a non-Saccharomyces 'fermentome', a specific set of six genes uniquely present in fermentative species and absent in non-fermentative ones, and an expanded set of 35 genes constituting the complete fermentome. Moreover, we delineated a 'flavorome' by examining 96 genes across 19 metabolic categories implicated in wine aroma and flavour enhancement. These discoveries provide valuable genomic insights, offering new avenues for innovative winemaking practices and research. Citation: Franco-Duarte R, Fernandes T, Sousa MJ, Sampaio P, Rito T, Soares P (2025). Phylogenomics and functional annotation of 530 non-Saccharomyces yeasts from winemaking environments reveals their fermentome and flavorome. Studies in Mycology 111: 1-17. doi: 10.3114/sim.2025.111.01.
The genus Aspergillus is diverse, including species of industrial importance, human pathogens, plant pests, and model organisms. Aspergillus includes species from sections Usti and Cavernicolus, which until recently were joined in section Usti, but have now been proposed to be non-monophyletic and were split by section Nidulantes, Aenei and Raperi. To learn more about these sections, we have sequenced the genomes of 13 Aspergillus species from section Cavernicolus (A. cavernicola, A. californicus, and A. egyptiacus), section Usti (A. carlsbadensis, A. germanicus, A. granulosus, A. heterothallicus, A. insuetus, A. keveii, A. lucknowensis, A. pseudodeflectus and A. pseudoustus), and section Nidulantes (A. quadrilineatus, previously A. tetrazonus). We compared these genomes with 16 additional species from Aspergillus to explore their genetic diversity, based on their genome content, repeat-induced point mutations (RIPs), transposable elements, carbohydrate-active enzyme (CAZyme) profile, growth on plant polysaccharides, and secondary metabolite gene clusters (SMGCs). All analyses support the split of section Usti and provide additional insights: Analyses of genes found only in single species show that these constitute genes which appear to be involved in adaptation to new carbon sources, regulation to fit new niches, and bioactive compounds for competitive advantages, suggesting that these support species differentiation in Aspergillus species. Sections Usti and Cavernicolus have mainly unique SMGCs. Section Usti contains very large and information-rich genomes, an expansion partially driven by CAZymes, as section Usti contains the most CAZyme-rich species seen in genus Aspergillus. Section Usti is clearly an underutilized source of plant biomass degraders and shows great potential as industrial enzyme producers. Citation: Nybo JL, Vesth TC, Theobald S, Frisvad JC, Larsen TO, Kjaerboelling I, Rothschild-Mancinelli K, Lyhne EK, Barry K, Clum A, Yoshinaga Y, Ledsgaard L, Daum C, Lipzen A, Kuo A, Riley R, Mondo S, LaButti K, Haridas S, Pangalinan J, Salamov AA, Simmons BA, Magnuson JK, Chen J, Drula E, Henrissat B, Wiebenga A, Lubbers RJM, Müller A, dos Santos Gomes AC, Mäkelä MR, Stajich JE, Grigoriev IV, Mortensen UH, de Vries RP, Baker SE, Andersen MR (2025). Section-level genome sequencing and comparative genomics of Aspergillus sections Cavernicolus and Usti. Studies in Mycology 111: 101-114. doi: 10.3114/sim.2025.111.03.
The Mucorales is a group of ancient fungi with global distribution. In the current study we accessed mucoralean fungi isolated from two countries on opposite sides of the Earth and in different hemispheres: South Korea and Brazil. Mucorales isolates were obtained from freshwater, soil, invertebrates, and fruit seeds and identified using phenotypic techniques combined with the DNA sequence data. These analyses revealed 15 new species including one that we affiliated to a newly proposed genus, Neofennellomyces. Names proposed for these 15 new species are Absidia cheongyangensis, A. fluvii, A. kunryangriensis, A. paracylindrospora, A. tarda, A. variiprojecta, A. variispora, Backusella varians, Mucor albicolonia, M. aurantiacus, M. cryophilus, M. glutinatus, M. paraorantomantidis, M. timomeni, and Neofennellomyces jeongsukae. Of these new species, 12 were isolated from South Korea: A. cheongyangensis, A. fluvii, A. kunryangriensis, A. paracylindrospora, B. varians, M. albicolonia, M. aurantiacus, M. cryophilus, M. glutinatus, M. paraorantomantidis, M. timomeni, and N. jeongsukae, and three from Brazil: A. tarda, A. variiprojecta, and A. variispora. Niche specificity of these fungi is discussed including newly recorded invertebrate hosts and a new geographic distribution for species of Backusella, Circinella, Cunninghamella, and Mucor. Given these findings, we provide an inventory of Mucorales. Taxonomic novelties: New genus: Neofennellomyces Hyang B. Lee & T.T.T. Nguyen. New species: Absidia cheongyangensis Hyang B. Lee & T.T.T. Nguyen, Absidia fluvii Hyang B. Lee, A.L. Santiago, P.M. Kirk, K. Voigt & T.T.T. Nguyen, Absidia kunryangriensis Hyang B. Lee & T.T.T. Nguyen, Absidia paracylindrospora Hyang B. Lee & T.T.T. Nguyen, Absidia tarda T.R.L. Cordeiro, Hyang B. Lee & A.L. Santiago, Absidia variiprojecta T.R.L. Cordeiro & A.L. Santiago, Absidia variispora T.R.L. Cordeiro & A.L. Santiago, Backusella varians Hyang B. Lee & T.T.T. Nguyen, Mucor aurantiacus Hyang B. Lee & T.T.T. Nguyen, Mucor cryophilus Hyang B. Lee & T.T.T. Nguyen, Mucor albicolonia Hyang B. Lee & T.T.T. Nguyen, Mucor glutinatus Hyang B. Lee & T.T.T. Nguyen, Mucor paraorantomantidis Hyang B. Lee & T.T.T. Nguyen, Mucor timomeni Hyang B. Lee & T.T.T. Nguyen, Neofennellomyces jeongsukae Hyang B. Lee & T.T.T. Nguyen. Citation: Nguyen TTT, de A. Santiago ALCM, Hallsworth JE, Cordeiro TRL, Voigt K, Kirk PM, Crous PW, Júnior MAM, Elsztein C, Lee HB (2024). New Mucorales from opposite ends of the world. Studies in Mycology 109: 273-321. doi: 10.3114/sim.2024.109.04.

