内梯度分布张量的累积展开框架

Leonardo A. Pedraza Pérez , Gonzalo A. Álvarez
{"title":"内梯度分布张量的累积展开框架","authors":"Leonardo A. Pedraza Pérez ,&nbsp;Gonzalo A. Álvarez","doi":"10.1016/j.jmro.2023.100136","DOIUrl":null,"url":null,"abstract":"<div><p>Magnetic resonance imaging is a powerful, non invasive tool for medical diagnosis. The low sensitivity for detecting the nuclear spin signals, typically limits the image resolution to several tens of micrometers in preclinical systems and millimeters in clinical scanners. Other sources of information, derived from diffusion processes of intrinsic molecules such as water in the tissues, allow getting morphological information at micrometric and submicrometric scales as potential biomarkers of several pathologies. Here we consider extracting this morphological information by probing the distribution of internal magnetic field gradients induced by the heterogeneous magnetic susceptibility of the medium. We use a cumulant expansion to derive the dephasing on the spin signal induced by the molecules that explore these internal gradients while diffusing. Based on the cumulant expansion, we define internal gradient distributions tensors (IGDT) and propose modulating gradient spin echo sequences to probe them. These IGDT contain microstructural morphological information that characterize porous media and biological tissues. We evaluate the IGDT effects on the magnetization decay with typical conditions of brain tissue and show that their effects can be experimentally observed. Our results thus provide a framework for exploiting IGDT as quantitative diagnostic tools.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100136"},"PeriodicalIF":2.6240,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666441023000444/pdfft?md5=ba2ece990376de71fb8be126e3b4c3ef&pid=1-s2.0-S2666441023000444-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Cumulant expansion framework for internal gradient distributions tensors\",\"authors\":\"Leonardo A. Pedraza Pérez ,&nbsp;Gonzalo A. Álvarez\",\"doi\":\"10.1016/j.jmro.2023.100136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Magnetic resonance imaging is a powerful, non invasive tool for medical diagnosis. The low sensitivity for detecting the nuclear spin signals, typically limits the image resolution to several tens of micrometers in preclinical systems and millimeters in clinical scanners. Other sources of information, derived from diffusion processes of intrinsic molecules such as water in the tissues, allow getting morphological information at micrometric and submicrometric scales as potential biomarkers of several pathologies. Here we consider extracting this morphological information by probing the distribution of internal magnetic field gradients induced by the heterogeneous magnetic susceptibility of the medium. We use a cumulant expansion to derive the dephasing on the spin signal induced by the molecules that explore these internal gradients while diffusing. Based on the cumulant expansion, we define internal gradient distributions tensors (IGDT) and propose modulating gradient spin echo sequences to probe them. These IGDT contain microstructural morphological information that characterize porous media and biological tissues. We evaluate the IGDT effects on the magnetization decay with typical conditions of brain tissue and show that their effects can be experimentally observed. Our results thus provide a framework for exploiting IGDT as quantitative diagnostic tools.</p></div>\",\"PeriodicalId\":365,\"journal\":{\"name\":\"Journal of Magnetic Resonance Open\",\"volume\":\"16 \",\"pages\":\"Article 100136\"},\"PeriodicalIF\":2.6240,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666441023000444/pdfft?md5=ba2ece990376de71fb8be126e3b4c3ef&pid=1-s2.0-S2666441023000444-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetic Resonance Open\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666441023000444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Open","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666441023000444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

磁共振成像是一种强大的、非侵入性的医学诊断工具。检测核自旋信号的低灵敏度通常限制了临床前系统的图像分辨率为几十微米,临床扫描仪的图像分辨率为毫米。其他信息来源,来自内部分子的扩散过程,如组织中的水,允许在微米和亚微米尺度上获得形态学信息,作为几种病理的潜在生物标志物。在这里,我们考虑通过探测由介质的非均质磁化率引起的内部磁场梯度分布来提取这些形态信息。我们使用累积展开来推导由分子在扩散时探索这些内部梯度所引起的自旋信号的消相。在累积展开的基础上,定义了内部梯度分布张量(IGDT),并提出了调制梯度自旋回波序列来探测它们。这些IGDT包含表征多孔介质和生物组织的微观结构形态学信息。我们在典型的脑组织条件下评估了IGDT对磁化衰减的影响,并表明它们的影响可以在实验中观察到。因此,我们的结果为利用IGDT作为定量诊断工具提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cumulant expansion framework for internal gradient distributions tensors

Magnetic resonance imaging is a powerful, non invasive tool for medical diagnosis. The low sensitivity for detecting the nuclear spin signals, typically limits the image resolution to several tens of micrometers in preclinical systems and millimeters in clinical scanners. Other sources of information, derived from diffusion processes of intrinsic molecules such as water in the tissues, allow getting morphological information at micrometric and submicrometric scales as potential biomarkers of several pathologies. Here we consider extracting this morphological information by probing the distribution of internal magnetic field gradients induced by the heterogeneous magnetic susceptibility of the medium. We use a cumulant expansion to derive the dephasing on the spin signal induced by the molecules that explore these internal gradients while diffusing. Based on the cumulant expansion, we define internal gradient distributions tensors (IGDT) and propose modulating gradient spin echo sequences to probe them. These IGDT contain microstructural morphological information that characterize porous media and biological tissues. We evaluate the IGDT effects on the magnetization decay with typical conditions of brain tissue and show that their effects can be experimentally observed. Our results thus provide a framework for exploiting IGDT as quantitative diagnostic tools.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
期刊最新文献
Improved 2D hydride detection for NMR-chemosensing via p‐H2 Hyperpolarization A practical guide to metal ions dynamic nuclear polarization in materials science Current state of the art of analyte scope in urine metabolome analysis by non-hydrogenative PHIP Natural abundance 195Pt-13C correlation NMR spectroscopy on surfaces enabled by fast MAS dynamic nuclear polarization Nuclear hyperpolarization in electron-transfer proteins: Revealing unexpected light-induced 15N signals with field-cycling magic-angle spinning NMR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1