微繁殖玫瑰花单萜类吲哚类生物碱壁相关激酶的全基因组鉴定、分子对接和多糖提取

IF 2.7 3区 生物学 Q2 PLANT SCIENCES Journal of Plant Research Pub Date : 2024-01-01 Epub Date: 2023-11-14 DOI:10.1007/s10265-023-01504-1
Jawad Ahmed, Yasar Sajjad, Aasia Latif, Mohammad Saeed Lodhi, Muhammad Huzafa, Chen Situ, Raza Ahmad, Muhammad Maroof Shah, Amjad Hassan
{"title":"微繁殖玫瑰花单萜类吲哚类生物碱壁相关激酶的全基因组鉴定、分子对接和多糖提取","authors":"Jawad Ahmed, Yasar Sajjad, Aasia Latif, Mohammad Saeed Lodhi, Muhammad Huzafa, Chen Situ, Raza Ahmad, Muhammad Maroof Shah, Amjad Hassan","doi":"10.1007/s10265-023-01504-1","DOIUrl":null,"url":null,"abstract":"<p><p>Wall-associated kinases (WAKs) are a unique family of proteins that are predominantly localized on the plasma membrane and simultaneously bound to the cell wall. WAKs play a pivotal role in signal transduction to regulate growth, defense, and response to environmental stimuli in plants. These kinases have been identified and characterized in various plant species, however, similar information for Catharanthus roseus is scarce. C. roseus is an evergreen ornamental plant that produces a repertoire of biologically active compounds. The plant is best characterized for the production of antineoplastic monoterpenoid indole alkaloids (MIAs) namely vinblastine and vincristine. Owing to the diverse composition of phytochemicals, C. roseus is known as a \"model non-model\" plant for secondary metabolite research. Genome analyses showed 37 putative CrWAK genes present in C. roseus, largely localized on the plasma membrane. Phylogenetic analysis revealed six clusters of CrWAKs. Diverse cis-acting elements, including those involved in defense responses, were identified on the promotor regions of CrWAK genes. The highest binding affinity (- 12.6 kcal/mol) was noted for CrWAK-22 against tri-galacturonic acid. Tri-galacturonic acid stimulated 2.5-fold higher production of vinblastine, sixfold upregulation of the expression of ORCA3 transcription factor, and 6.14-fold upregulation of CrWAK-22 expression. Based on these results it was concluded that the expression of CrWAK genes induced by biotic elicitors may have an important role in the production of MIAs. The current findings may serve as a basis for functional characterization and mechanistic explanation of the role of CrWAK genes in the biosynthesis of MIAs upon elicitation.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-wide identification and characterization of wall-associated kinases, molecular docking and polysaccharide elicitation of monoterpenoid indole alkaloids in micro-propagated Catharanthus roseus.\",\"authors\":\"Jawad Ahmed, Yasar Sajjad, Aasia Latif, Mohammad Saeed Lodhi, Muhammad Huzafa, Chen Situ, Raza Ahmad, Muhammad Maroof Shah, Amjad Hassan\",\"doi\":\"10.1007/s10265-023-01504-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wall-associated kinases (WAKs) are a unique family of proteins that are predominantly localized on the plasma membrane and simultaneously bound to the cell wall. WAKs play a pivotal role in signal transduction to regulate growth, defense, and response to environmental stimuli in plants. These kinases have been identified and characterized in various plant species, however, similar information for Catharanthus roseus is scarce. C. roseus is an evergreen ornamental plant that produces a repertoire of biologically active compounds. The plant is best characterized for the production of antineoplastic monoterpenoid indole alkaloids (MIAs) namely vinblastine and vincristine. Owing to the diverse composition of phytochemicals, C. roseus is known as a \\\"model non-model\\\" plant for secondary metabolite research. Genome analyses showed 37 putative CrWAK genes present in C. roseus, largely localized on the plasma membrane. Phylogenetic analysis revealed six clusters of CrWAKs. Diverse cis-acting elements, including those involved in defense responses, were identified on the promotor regions of CrWAK genes. The highest binding affinity (- 12.6 kcal/mol) was noted for CrWAK-22 against tri-galacturonic acid. Tri-galacturonic acid stimulated 2.5-fold higher production of vinblastine, sixfold upregulation of the expression of ORCA3 transcription factor, and 6.14-fold upregulation of CrWAK-22 expression. Based on these results it was concluded that the expression of CrWAK genes induced by biotic elicitors may have an important role in the production of MIAs. The current findings may serve as a basis for functional characterization and mechanistic explanation of the role of CrWAK genes in the biosynthesis of MIAs upon elicitation.</p>\",\"PeriodicalId\":16813,\"journal\":{\"name\":\"Journal of Plant Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10265-023-01504-1\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-023-01504-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

壁相关激酶(wall -associated kinase, WAKs)是一类独特的蛋白家族,主要定位于质膜上,同时与细胞壁结合。WAKs在调节植物生长、防御和对环境刺激的反应的信号转导中起着关键作用。这些激酶已经在许多植物物种中被鉴定和表征,然而,在玫瑰花中却很少有类似的信息。玫瑰是一种常绿的观赏植物,产生一系列的生物活性化合物。该植物以生产抗肿瘤单萜类吲哚生物碱(MIAs)即长春花碱和长春新碱而闻名。由于其化学成分的多样性,玫瑰被认为是次生代谢物研究的“模式非模式”植物。基因组分析显示,玫瑰花中存在37个推测的CrWAK基因,大部分定位在质膜上。系统发育分析发现6个CrWAKs聚类。在CrWAK基因的启动子区域发现了多种顺式作用元件,包括那些参与防御反应的元件。CrWAK-22对三半乳糖醛酸的结合亲和力最高(- 12.6 kcal/mol)。三半乳糖醛酸刺激长春花碱产量增加2.5倍,ORCA3转录因子表达上调6倍,CrWAK-22表达上调6.14倍。由此可见,生物激发子诱导的CrWAK基因表达可能在MIAs的产生中起重要作用。目前的研究结果可以作为CrWAK基因在诱导后MIAs生物合成中的功能表征和机制解释的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genome-wide identification and characterization of wall-associated kinases, molecular docking and polysaccharide elicitation of monoterpenoid indole alkaloids in micro-propagated Catharanthus roseus.

Wall-associated kinases (WAKs) are a unique family of proteins that are predominantly localized on the plasma membrane and simultaneously bound to the cell wall. WAKs play a pivotal role in signal transduction to regulate growth, defense, and response to environmental stimuli in plants. These kinases have been identified and characterized in various plant species, however, similar information for Catharanthus roseus is scarce. C. roseus is an evergreen ornamental plant that produces a repertoire of biologically active compounds. The plant is best characterized for the production of antineoplastic monoterpenoid indole alkaloids (MIAs) namely vinblastine and vincristine. Owing to the diverse composition of phytochemicals, C. roseus is known as a "model non-model" plant for secondary metabolite research. Genome analyses showed 37 putative CrWAK genes present in C. roseus, largely localized on the plasma membrane. Phylogenetic analysis revealed six clusters of CrWAKs. Diverse cis-acting elements, including those involved in defense responses, were identified on the promotor regions of CrWAK genes. The highest binding affinity (- 12.6 kcal/mol) was noted for CrWAK-22 against tri-galacturonic acid. Tri-galacturonic acid stimulated 2.5-fold higher production of vinblastine, sixfold upregulation of the expression of ORCA3 transcription factor, and 6.14-fold upregulation of CrWAK-22 expression. Based on these results it was concluded that the expression of CrWAK genes induced by biotic elicitors may have an important role in the production of MIAs. The current findings may serve as a basis for functional characterization and mechanistic explanation of the role of CrWAK genes in the biosynthesis of MIAs upon elicitation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Plant Research
Journal of Plant Research 生物-植物科学
CiteScore
5.40
自引率
3.60%
发文量
59
审稿时长
1 months
期刊介绍: The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology. The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.
期刊最新文献
Acknowledgement. Intricate intracellular kinase network regulates the Spodoptera lituta-derived elicitor response signaling in Arabidopsis. Female flowers with short ovaries in 'Lemon' cucumber (Cucumis sativus) plants and their progeny carrying the mm genotype (CS-ACS2 genes with c.97G > T mutations): a novel trimonoecious phenotype. Identification and functional analysis of the Dof transcription factor genes in sugar beet. Expression of laccase and ascorbate oxidase affects lignin composition in Arabidopsis thaliana stems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1