化疗和辅助治疗对乳腺癌患者骨内部重塑过程及其力学行为的影响。

IF 2.2 4区 医学 Q3 ENGINEERING, BIOMEDICAL International Journal for Numerical Methods in Biomedical Engineering Pub Date : 2023-11-13 DOI:10.1002/cnm.3788
Imane Ait Oumghar, Abdelwahed Barkaoui, Tarek Merzouki, Daphne Guenoun, Patrick Chabrand
{"title":"化疗和辅助治疗对乳腺癌患者骨内部重塑过程及其力学行为的影响。","authors":"Imane Ait Oumghar,&nbsp;Abdelwahed Barkaoui,&nbsp;Tarek Merzouki,&nbsp;Daphne Guenoun,&nbsp;Patrick Chabrand","doi":"10.1002/cnm.3788","DOIUrl":null,"url":null,"abstract":"<p>Breast cancer is a significant public health issue affecting women worldwide. While advancements in treatment options have led to improved survival rates, the impact of breast cancer and its treatments on bone health cannot be overlooked. Bone remodeling is a complex process regulated by the delicate balance between bone formation and resorption. Any disruption to this balance can lead to decreased bone density, increased fracture risk, and compromised physical function. To investigate the effects of breast cancer and its treatments on bone remodeling, a finite element model was developed in this study. This model incorporated bone remodeling equations to simulate the mechanical behavior of bone under different conditions. The ABAQUS/UMAT software was used to simulate the behavior of bone tissue under the influence of breast cancer and treatments. Our findings suggest that bone loss is more pronounced after secondary breast cancer and treatment, leading to bone loss (6%–19% decrease in BV/TV), reduced bone stimulation, and decreased effectiveness of physical activity on recovery. These results highlight the importance of early intervention and management of bone health in breast cancer patients to mitigate the negative impact of cancer and treatment on bone remodeling.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemotherapy and adjuvant therapies' impact on the internal remodeling process of bone and its mechanical behavior for breast cancer patients\",\"authors\":\"Imane Ait Oumghar,&nbsp;Abdelwahed Barkaoui,&nbsp;Tarek Merzouki,&nbsp;Daphne Guenoun,&nbsp;Patrick Chabrand\",\"doi\":\"10.1002/cnm.3788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Breast cancer is a significant public health issue affecting women worldwide. While advancements in treatment options have led to improved survival rates, the impact of breast cancer and its treatments on bone health cannot be overlooked. Bone remodeling is a complex process regulated by the delicate balance between bone formation and resorption. Any disruption to this balance can lead to decreased bone density, increased fracture risk, and compromised physical function. To investigate the effects of breast cancer and its treatments on bone remodeling, a finite element model was developed in this study. This model incorporated bone remodeling equations to simulate the mechanical behavior of bone under different conditions. The ABAQUS/UMAT software was used to simulate the behavior of bone tissue under the influence of breast cancer and treatments. Our findings suggest that bone loss is more pronounced after secondary breast cancer and treatment, leading to bone loss (6%–19% decrease in BV/TV), reduced bone stimulation, and decreased effectiveness of physical activity on recovery. These results highlight the importance of early intervention and management of bone health in breast cancer patients to mitigate the negative impact of cancer and treatment on bone remodeling.</p>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3788\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3788","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌是影响全世界妇女的一个重大公共卫生问题。虽然治疗方案的进步提高了生存率,但乳腺癌及其治疗对骨骼健康的影响不容忽视。骨重塑是一个复杂的过程,受骨形成和骨吸收之间微妙平衡的调节。任何对这种平衡的破坏都会导致骨密度降低,骨折风险增加,身体功能受损。为了研究乳腺癌及其治疗对骨重塑的影响,本研究建立了一个有限元模型。该模型采用骨重塑方程来模拟骨在不同条件下的力学行为。采用ABAQUS/UMAT软件模拟乳腺癌及治疗对骨组织的影响。我们的研究结果表明,继发性乳腺癌和治疗后骨质流失更为明显,导致骨质流失(BV/TV下降6%-19%),骨刺激减少,体力活动对恢复的效果下降。这些结果强调了早期干预和管理乳腺癌患者骨骼健康的重要性,以减轻癌症和治疗对骨重塑的负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemotherapy and adjuvant therapies' impact on the internal remodeling process of bone and its mechanical behavior for breast cancer patients

Breast cancer is a significant public health issue affecting women worldwide. While advancements in treatment options have led to improved survival rates, the impact of breast cancer and its treatments on bone health cannot be overlooked. Bone remodeling is a complex process regulated by the delicate balance between bone formation and resorption. Any disruption to this balance can lead to decreased bone density, increased fracture risk, and compromised physical function. To investigate the effects of breast cancer and its treatments on bone remodeling, a finite element model was developed in this study. This model incorporated bone remodeling equations to simulate the mechanical behavior of bone under different conditions. The ABAQUS/UMAT software was used to simulate the behavior of bone tissue under the influence of breast cancer and treatments. Our findings suggest that bone loss is more pronounced after secondary breast cancer and treatment, leading to bone loss (6%–19% decrease in BV/TV), reduced bone stimulation, and decreased effectiveness of physical activity on recovery. These results highlight the importance of early intervention and management of bone health in breast cancer patients to mitigate the negative impact of cancer and treatment on bone remodeling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering ENGINEERING, BIOMEDICAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.50
自引率
9.50%
发文量
103
审稿时长
3 months
期刊介绍: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.
期刊最新文献
Therapeutic Effect of Targeted Deployment Filling Coils in the Treatment of Intracranial Aneurysms. Modeling Fibrin Accumulation on Flow-Diverting Devices for Intracranial Aneurysms. A comparison of machine learning methods for recovering noisy and missing 4D flow MRI data. A semi-automatic method for block-structured hexahedral meshing of aortic dissections. Fluid-structure interaction analysis of a healthy aortic valve and its surrounding haemodynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1