Hernán Bontá, Juliana Bugiolachi, Carla A Perrote, Luciana M Sánchez, Gisela E Pulitano Manisagian, Federico G Galli, Facundo Caride
{"title":"数字化定制骨块同种异体移植牙槽嵴重建。","authors":"Hernán Bontá, Juliana Bugiolachi, Carla A Perrote, Luciana M Sánchez, Gisela E Pulitano Manisagian, Federico G Galli, Facundo Caride","doi":"10.1002/cap.10270","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Reduced alveolar ridge volume is an often consequence after tooth loss, compromising implant placement and prosthetic rehabilitation. The digital customization of bone block allografts (BBA) is an alternative that incorporates advantages such as intimate contact with the recipient bed, increasing graft stability and reduced surgical time. In addition, enamel matrix derivate (EMD) has attracted interest for its effect on osteogenic gene expression and cell adhesion; few studies have focused on the benefits of bone regeneration with EMD. The aim of this case report is to present the reconstruction of a severely atrophic alveolar ridge defect with a digitally customized bone block allograft (CBBA) in combination with EMD as an adjuvant for bone regeneration and soft tissue healing.</p><p><strong>Methods: </strong>Initially, the digital planning and manufacture of the BBA was performed based on an initial cone beam computed tomography (CBCT) scan. EMD was applied to the recipient site and to the CBBA before graft fixation. After 6 months, bone biopsies were obtained on re-entry surgery for prosthetically guided implant placement.</p><p><strong>Results: </strong>Clinically, bone block showed good integration with the adjacent tissue and no signs of rejection or necrosis were found. On the histological evaluation, new bone was observed in intimate contact with the allograft and showed viable osteocytes and osteoblasts along its entire length. Residual allograft particles were observed to be highly osteoconductive.</p><p><strong>Conclusion: </strong>According to the clinical and histological results presented, the digital customization of the BBA allows an ideal graft fit to the recipient bed with excellent results in bone regeneration.</p>","PeriodicalId":55950,"journal":{"name":"Clinical Advances in Periodontics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alveolar ridge reconstruction with a digitally customized bone block allograft.\",\"authors\":\"Hernán Bontá, Juliana Bugiolachi, Carla A Perrote, Luciana M Sánchez, Gisela E Pulitano Manisagian, Federico G Galli, Facundo Caride\",\"doi\":\"10.1002/cap.10270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Reduced alveolar ridge volume is an often consequence after tooth loss, compromising implant placement and prosthetic rehabilitation. The digital customization of bone block allografts (BBA) is an alternative that incorporates advantages such as intimate contact with the recipient bed, increasing graft stability and reduced surgical time. In addition, enamel matrix derivate (EMD) has attracted interest for its effect on osteogenic gene expression and cell adhesion; few studies have focused on the benefits of bone regeneration with EMD. The aim of this case report is to present the reconstruction of a severely atrophic alveolar ridge defect with a digitally customized bone block allograft (CBBA) in combination with EMD as an adjuvant for bone regeneration and soft tissue healing.</p><p><strong>Methods: </strong>Initially, the digital planning and manufacture of the BBA was performed based on an initial cone beam computed tomography (CBCT) scan. EMD was applied to the recipient site and to the CBBA before graft fixation. After 6 months, bone biopsies were obtained on re-entry surgery for prosthetically guided implant placement.</p><p><strong>Results: </strong>Clinically, bone block showed good integration with the adjacent tissue and no signs of rejection or necrosis were found. On the histological evaluation, new bone was observed in intimate contact with the allograft and showed viable osteocytes and osteoblasts along its entire length. Residual allograft particles were observed to be highly osteoconductive.</p><p><strong>Conclusion: </strong>According to the clinical and histological results presented, the digital customization of the BBA allows an ideal graft fit to the recipient bed with excellent results in bone regeneration.</p>\",\"PeriodicalId\":55950,\"journal\":{\"name\":\"Clinical Advances in Periodontics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Advances in Periodontics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cap.10270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Advances in Periodontics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cap.10270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Alveolar ridge reconstruction with a digitally customized bone block allograft.
Background: Reduced alveolar ridge volume is an often consequence after tooth loss, compromising implant placement and prosthetic rehabilitation. The digital customization of bone block allografts (BBA) is an alternative that incorporates advantages such as intimate contact with the recipient bed, increasing graft stability and reduced surgical time. In addition, enamel matrix derivate (EMD) has attracted interest for its effect on osteogenic gene expression and cell adhesion; few studies have focused on the benefits of bone regeneration with EMD. The aim of this case report is to present the reconstruction of a severely atrophic alveolar ridge defect with a digitally customized bone block allograft (CBBA) in combination with EMD as an adjuvant for bone regeneration and soft tissue healing.
Methods: Initially, the digital planning and manufacture of the BBA was performed based on an initial cone beam computed tomography (CBCT) scan. EMD was applied to the recipient site and to the CBBA before graft fixation. After 6 months, bone biopsies were obtained on re-entry surgery for prosthetically guided implant placement.
Results: Clinically, bone block showed good integration with the adjacent tissue and no signs of rejection or necrosis were found. On the histological evaluation, new bone was observed in intimate contact with the allograft and showed viable osteocytes and osteoblasts along its entire length. Residual allograft particles were observed to be highly osteoconductive.
Conclusion: According to the clinical and histological results presented, the digital customization of the BBA allows an ideal graft fit to the recipient bed with excellent results in bone regeneration.