瞬间捕捉:基性硅酸盐岩浆中不混相碳酸盐和硫化物液体的相互作用——来自蒙古西北部Rudniy侵入岩的洞察

IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Mineralium Deposita Pub Date : 2023-11-12 DOI:10.1007/s00126-023-01228-1
Maria Cherdantseva, Andrey Vishnevskiy, Pedro J. Jugo, Laure A. J. Martin, Matvei Aleshin, Malcolm P. Roberts, Elena Shaparenko, Andrew Langendam, Daryl L. Howard, Marco L. Fiorentini
{"title":"瞬间捕捉:基性硅酸盐岩浆中不混相碳酸盐和硫化物液体的相互作用——来自蒙古西北部Rudniy侵入岩的洞察","authors":"Maria Cherdantseva, Andrey Vishnevskiy, Pedro J. Jugo, Laure A. J. Martin, Matvei Aleshin, Malcolm P. Roberts, Elena Shaparenko, Andrew Langendam, Daryl L. Howard, Marco L. Fiorentini","doi":"10.1007/s00126-023-01228-1","DOIUrl":null,"url":null,"abstract":"<p>The Devonian Rudniy intrusion is a composite magmatic body comprising two gabbroid units. Located in the Tsagaan-Shuvuut ridge in NW Mongolia, it is the only one known to contain disseminated sulfide Ni-Cu-PGE minerals out of numerous gabbroid intrusions surrounding the Tuva depression. The ore occurs as disseminated sulfide globules made of pyrrhotite, pentlandite, chalcopyrite, and cubanite, confined to a narrow troctolitic layer at the margins of a melanogabbro, at the contact with a previously emplaced leucogabbro. Globules generally display mantle-dominated sulfur isotopic signatures but show variable metallogenic and mineralogical characteristics, as well as notably different sizes and morphologies reflecting variable cooling and crystallization regimes in different parts of the intrusion. Sulfides from the chilled margin of the melanogabbro are surrounded and intergrown with volatile-rich (i.e., CO<sub>2</sub>-, H<sub>2</sub>O-, F-, and Cl) phases such as calcite, chlorite, mica, amphibole, and apatite. Based on the mineralogical and textural relationships of volatile-rich phases with sulfides, we argue that this assemblage represents the product of the crystallization of volatile-rich carbonate melt immiscible with both silicate and sulfide liquids. We put forward the hypothesis that volatile-rich carbonate melt envelops sulfide droplets facilitating their transport in magmatic conduits and that this process may be more widespread than commonly thought. The smaller sulfide globules, which are interpreted to derive from the breakup of larger globules during transport and emplacement, do not display an association with volatile-rich phases, suggesting that the original carbonate melt could have been detached from them during the evolution of the magmatic system. Variable rates of crystallization may have been responsible for the observed disparities in the mineralogical and metallogenic characteristics of different sulfide globules entrained in the Rudniy intrusion.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"54 24","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Caught in the moment: interaction of immiscible carbonate and sulfide liquids in mafic silicate magma—insights from the Rudniy intrusion (NW Mongolia)\",\"authors\":\"Maria Cherdantseva, Andrey Vishnevskiy, Pedro J. Jugo, Laure A. J. Martin, Matvei Aleshin, Malcolm P. Roberts, Elena Shaparenko, Andrew Langendam, Daryl L. Howard, Marco L. Fiorentini\",\"doi\":\"10.1007/s00126-023-01228-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Devonian Rudniy intrusion is a composite magmatic body comprising two gabbroid units. Located in the Tsagaan-Shuvuut ridge in NW Mongolia, it is the only one known to contain disseminated sulfide Ni-Cu-PGE minerals out of numerous gabbroid intrusions surrounding the Tuva depression. The ore occurs as disseminated sulfide globules made of pyrrhotite, pentlandite, chalcopyrite, and cubanite, confined to a narrow troctolitic layer at the margins of a melanogabbro, at the contact with a previously emplaced leucogabbro. Globules generally display mantle-dominated sulfur isotopic signatures but show variable metallogenic and mineralogical characteristics, as well as notably different sizes and morphologies reflecting variable cooling and crystallization regimes in different parts of the intrusion. Sulfides from the chilled margin of the melanogabbro are surrounded and intergrown with volatile-rich (i.e., CO<sub>2</sub>-, H<sub>2</sub>O-, F-, and Cl) phases such as calcite, chlorite, mica, amphibole, and apatite. Based on the mineralogical and textural relationships of volatile-rich phases with sulfides, we argue that this assemblage represents the product of the crystallization of volatile-rich carbonate melt immiscible with both silicate and sulfide liquids. We put forward the hypothesis that volatile-rich carbonate melt envelops sulfide droplets facilitating their transport in magmatic conduits and that this process may be more widespread than commonly thought. The smaller sulfide globules, which are interpreted to derive from the breakup of larger globules during transport and emplacement, do not display an association with volatile-rich phases, suggesting that the original carbonate melt could have been detached from them during the evolution of the magmatic system. Variable rates of crystallization may have been responsible for the observed disparities in the mineralogical and metallogenic characteristics of different sulfide globules entrained in the Rudniy intrusion.</p>\",\"PeriodicalId\":18682,\"journal\":{\"name\":\"Mineralium Deposita\",\"volume\":\"54 24\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineralium Deposita\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00126-023-01228-1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralium Deposita","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00126-023-01228-1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

泥盆纪红泥期岩体是由两个辉长岩单元组成的复合岩浆体。它位于蒙古西北部的Tsagaan-Shuvuut山脊,是目前已知的唯一一个在图瓦坳陷周围的众多辉长岩侵入体中含有浸染状Ni-Cu-PGE硫化物矿物的矿床。矿石以浸染状硫化物小球的形式出现,由磁黄铁矿、镍黄铁矿、黄铜矿和立方铁矿组成,局限于黑长辉长岩边缘与先前侵位的白长辉长岩接触处的一个狭窄的滑石层中。球状体通常显示地幔主导的硫同位素特征,但表现出不同的成矿和矿物学特征,其显著的大小和形态差异反映了侵入体不同部位不同的冷却和结晶机制。来自黑长辉长岩冷缘的硫化物被富含挥发物(即CO2-、H2O-、F-和Cl)的相(如方解石、绿泥石、云母、角闪洞和磷灰石)包围和共生。根据富挥发物相与硫化物的矿物学和结构关系,我们认为该组合代表了富挥发物碳酸盐熔体与硅酸盐和硫化物液体不混溶的结晶产物。我们提出了一种假设,即富含挥发物的碳酸盐熔体包裹着硫化物液滴,有利于它们在岩浆管道中运输,并且这一过程可能比通常认为的更为普遍。较小的硫化物球被解释为来自于运输和就位过程中较大的硫化物球的破裂,没有显示出与富含挥发物相的联系,这表明原始的碳酸盐熔体可能在岩浆系统的演化过程中与它们分离。不同的结晶速率可能是在鲁得尼侵入体中观察到的不同硫化物球的矿物学和成矿特征差异的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Caught in the moment: interaction of immiscible carbonate and sulfide liquids in mafic silicate magma—insights from the Rudniy intrusion (NW Mongolia)

The Devonian Rudniy intrusion is a composite magmatic body comprising two gabbroid units. Located in the Tsagaan-Shuvuut ridge in NW Mongolia, it is the only one known to contain disseminated sulfide Ni-Cu-PGE minerals out of numerous gabbroid intrusions surrounding the Tuva depression. The ore occurs as disseminated sulfide globules made of pyrrhotite, pentlandite, chalcopyrite, and cubanite, confined to a narrow troctolitic layer at the margins of a melanogabbro, at the contact with a previously emplaced leucogabbro. Globules generally display mantle-dominated sulfur isotopic signatures but show variable metallogenic and mineralogical characteristics, as well as notably different sizes and morphologies reflecting variable cooling and crystallization regimes in different parts of the intrusion. Sulfides from the chilled margin of the melanogabbro are surrounded and intergrown with volatile-rich (i.e., CO2-, H2O-, F-, and Cl) phases such as calcite, chlorite, mica, amphibole, and apatite. Based on the mineralogical and textural relationships of volatile-rich phases with sulfides, we argue that this assemblage represents the product of the crystallization of volatile-rich carbonate melt immiscible with both silicate and sulfide liquids. We put forward the hypothesis that volatile-rich carbonate melt envelops sulfide droplets facilitating their transport in magmatic conduits and that this process may be more widespread than commonly thought. The smaller sulfide globules, which are interpreted to derive from the breakup of larger globules during transport and emplacement, do not display an association with volatile-rich phases, suggesting that the original carbonate melt could have been detached from them during the evolution of the magmatic system. Variable rates of crystallization may have been responsible for the observed disparities in the mineralogical and metallogenic characteristics of different sulfide globules entrained in the Rudniy intrusion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mineralium Deposita
Mineralium Deposita 地学-地球化学与地球物理
CiteScore
11.00
自引率
6.20%
发文量
61
审稿时长
6 months
期刊介绍: The journal Mineralium Deposita introduces new observations, principles, and interpretations from the field of economic geology, including nonmetallic mineral deposits, experimental and applied geochemistry, with emphasis on mineral deposits. It offers short and comprehensive articles, review papers, brief original papers, scientific discussions and news, as well as reports on meetings of importance to mineral research. The emphasis is on high-quality content and form for all articles and on international coverage of subject matter.
期刊最新文献
El Zorro: early Jurassic intrusion-related gold (IRG) mineralization in the oldest, western-most segment of the Andean Cordillera of Northern Chile Trace element and isotope composition of calcite, apatite, and zircon associated with magmatic sulfide globules Tracing fluid signature and metal mobility in complex orogens: insights from Pb-Zn mineralization in the Pyrenean Axial Zone Revealing Yukon’s hidden treasure: an atomic-scale investigation of Carlin-type gold mineralization in the Nadaleen Trend, Canada Gold mineralization in the hydrothermal field at the termination of a detachment fault: A case study of the Tianxiu Vent Field
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1