{"title":"城市可从复杂的供应链中受益","authors":"Nazlı B. Doğan, Alfonso Mejia, Michael Gomez","doi":"10.1038/s42949-023-00100-5","DOIUrl":null,"url":null,"abstract":"Supply chain complexity is perceived to exacerbate the supply disruptions or shocks experienced by a city. Here, we calculate two network measures of supply chain complexity based on the relative number—horizontal complexity—and relative strength—vertical complexity—of a city’s suppliers. Using a large dataset of more than 1 million annual supply flows to 69 major cities in the United States for 2012–2015, we show that a trade-off pattern between horizontal and vertical complexity tends to characterize the architecture of urban supply networks. This architecture shapes the resistance of cities to supply chain shocks. We find that a city experiences less intense shocks, on average, as supplier relative diversity (horizontal complexity) increases for more technologically sophisticated products, which may serve as a mechanism for buffering cities against supply chain shocks. These results could help cities anticipate and manage their supply chain risks.","PeriodicalId":74322,"journal":{"name":"npj urban sustainability","volume":" ","pages":"1-9"},"PeriodicalIF":9.1000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052311/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cities can benefit from complex supply chains\",\"authors\":\"Nazlı B. Doğan, Alfonso Mejia, Michael Gomez\",\"doi\":\"10.1038/s42949-023-00100-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supply chain complexity is perceived to exacerbate the supply disruptions or shocks experienced by a city. Here, we calculate two network measures of supply chain complexity based on the relative number—horizontal complexity—and relative strength—vertical complexity—of a city’s suppliers. Using a large dataset of more than 1 million annual supply flows to 69 major cities in the United States for 2012–2015, we show that a trade-off pattern between horizontal and vertical complexity tends to characterize the architecture of urban supply networks. This architecture shapes the resistance of cities to supply chain shocks. We find that a city experiences less intense shocks, on average, as supplier relative diversity (horizontal complexity) increases for more technologically sophisticated products, which may serve as a mechanism for buffering cities against supply chain shocks. These results could help cities anticipate and manage their supply chain risks.\",\"PeriodicalId\":74322,\"journal\":{\"name\":\"npj urban sustainability\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052311/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj urban sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s42949-023-00100-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj urban sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s42949-023-00100-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Supply chain complexity is perceived to exacerbate the supply disruptions or shocks experienced by a city. Here, we calculate two network measures of supply chain complexity based on the relative number—horizontal complexity—and relative strength—vertical complexity—of a city’s suppliers. Using a large dataset of more than 1 million annual supply flows to 69 major cities in the United States for 2012–2015, we show that a trade-off pattern between horizontal and vertical complexity tends to characterize the architecture of urban supply networks. This architecture shapes the resistance of cities to supply chain shocks. We find that a city experiences less intense shocks, on average, as supplier relative diversity (horizontal complexity) increases for more technologically sophisticated products, which may serve as a mechanism for buffering cities against supply chain shocks. These results could help cities anticipate and manage their supply chain risks.