优化悬浮水凝胶微球的自由形态可逆嵌入,大幅提高三维生物打印能力。

IF 2.7 4区 医学 Q3 CELL & TISSUE ENGINEERING Tissue engineering. Part C, Methods Pub Date : 2023-03-01 Epub Date: 2023-03-02 DOI:10.1089/ten.TEC.2022.0214
Catherine A Wu, Yuanjia Zhu, Akshay Venkatesh, Charles J Stark, Seung Hyun Lee, Y Joseph Woo
{"title":"优化悬浮水凝胶微球的自由形态可逆嵌入,大幅提高三维生物打印能力。","authors":"Catherine A Wu, Yuanjia Zhu, Akshay Venkatesh, Charles J Stark, Seung Hyun Lee, Y Joseph Woo","doi":"10.1089/ten.TEC.2022.0214","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) bioprinting demonstrates technology that is capable of producing structures comparable to native tissues in the human body. The freeform reversible embedding of suspended hydrogels (FRESH) technique involves hydrogel-based bio-inks printed within a thermo-reversible support bath to provide mechanical strength to the printed construct. Smaller and more uniform microsphere sizes of FRESH were reported to aid in enhancing printing resolution and construct accuracy. Therefore, we sought to optimize the FRESH generation protocol, particularly by varying stir speed and stir duration, in hopes to further improve microsphere size and uniformity. We observed optimal conditions at a stir speed of 600 rpm and stir duration for 20 h that generated the smallest microspheres with the best uniformity. Comparison of using the optimized FRESH to the commercial FRESH LifeSupport to bioprint single filament and geometrical constructs revealed reduced single filament diameters and higher angular precision in the optimized FRESH bio-printed constructs compared with those printed in the commercial FRESH. Overall, our refinement of the FRESH manufacturing protocol represents an important step toward enhancing 3D bioprinting resolution and construct fidelity. Improving such technologies allows for the fabrication of highly accurate constructs with anatomical properties similar to native counterparts. Such work has significant implications in the field of tissue engineering for producing accurate human organ model systems. Impact statement Freeform reversible embedding of suspended hydrogels (FRESH) is a method of sacrificial three-dimensional (3D) bioprinting that offers support to reinforce bio-ink extrusion during printing. During FRESH generation, the stir speed and stir duration of the mixture can significantly impact FRESH microsphere characteristics. In this study, we optimized FRESH microspheres to significantly improve resolution and accuracy in bioprinting. This advancement in FRESH-based 3D bioprinting technologies allows for the fabrication of highly accurate constructs with anatomical properties similar to native counterparts and has significant implications in the field of tissue engineering and translational medicine.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":"29 3","pages":"85-94"},"PeriodicalIF":2.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024587/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimization of Freeform Reversible Embedding of Suspended Hydrogel Microspheres for Substantially Improved Three-Dimensional Bioprinting Capabilities.\",\"authors\":\"Catherine A Wu, Yuanjia Zhu, Akshay Venkatesh, Charles J Stark, Seung Hyun Lee, Y Joseph Woo\",\"doi\":\"10.1089/ten.TEC.2022.0214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three-dimensional (3D) bioprinting demonstrates technology that is capable of producing structures comparable to native tissues in the human body. The freeform reversible embedding of suspended hydrogels (FRESH) technique involves hydrogel-based bio-inks printed within a thermo-reversible support bath to provide mechanical strength to the printed construct. Smaller and more uniform microsphere sizes of FRESH were reported to aid in enhancing printing resolution and construct accuracy. Therefore, we sought to optimize the FRESH generation protocol, particularly by varying stir speed and stir duration, in hopes to further improve microsphere size and uniformity. We observed optimal conditions at a stir speed of 600 rpm and stir duration for 20 h that generated the smallest microspheres with the best uniformity. Comparison of using the optimized FRESH to the commercial FRESH LifeSupport to bioprint single filament and geometrical constructs revealed reduced single filament diameters and higher angular precision in the optimized FRESH bio-printed constructs compared with those printed in the commercial FRESH. Overall, our refinement of the FRESH manufacturing protocol represents an important step toward enhancing 3D bioprinting resolution and construct fidelity. Improving such technologies allows for the fabrication of highly accurate constructs with anatomical properties similar to native counterparts. Such work has significant implications in the field of tissue engineering for producing accurate human organ model systems. Impact statement Freeform reversible embedding of suspended hydrogels (FRESH) is a method of sacrificial three-dimensional (3D) bioprinting that offers support to reinforce bio-ink extrusion during printing. During FRESH generation, the stir speed and stir duration of the mixture can significantly impact FRESH microsphere characteristics. In this study, we optimized FRESH microspheres to significantly improve resolution and accuracy in bioprinting. This advancement in FRESH-based 3D bioprinting technologies allows for the fabrication of highly accurate constructs with anatomical properties similar to native counterparts and has significant implications in the field of tissue engineering and translational medicine.</p>\",\"PeriodicalId\":23154,\"journal\":{\"name\":\"Tissue engineering. Part C, Methods\",\"volume\":\"29 3\",\"pages\":\"85-94\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024587/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering. Part C, Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.TEC.2022.0214\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEC.2022.0214","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

三维(3D)生物打印技术能够制造出与人体原生组织相媲美的结构。悬浮水凝胶的自由形态可逆嵌入(FRESH)技术包括在热可逆支撑浴中打印水凝胶基生物墨水,为打印结构提供机械强度。据报道,FRESH 的微球尺寸更小、更均匀,有助于提高打印分辨率和构造精度。因此,我们试图优化 FRESH 生成方案,特别是通过改变搅拌速度和搅拌持续时间,希望进一步改善微球尺寸和均匀性。我们观察到,在搅拌速度为 600 转/分钟、搅拌时间为 20 小时的最佳条件下,生成的微球最小、均匀度最好。将优化的 FRESH 与商用 FRESH LifeSupport 进行生物打印单丝和几何结构的比较显示,与商用 FRESH 相比,优化的 FRESH 生物打印结构的单丝直径更小,角度精度更高。总之,我们对 FRESH 制造规程的改进是朝着提高三维生物打印分辨率和构造保真度迈出的重要一步。改进此类技术可以制造出高度精确的、解剖学特性与原生相似的构建体。这项工作对组织工程领域制作精确的人体器官模型系统具有重要意义。影响声明 悬浮水凝胶的自由形态可逆嵌入(FRESH)是一种牺牲性三维(3D)生物打印方法,可在打印过程中提供支持以加强生物墨水的挤出。在 FRESH 生成过程中,混合物的搅拌速度和搅拌持续时间会显著影响 FRESH 微球的特性。在本研究中,我们对 FRESH 微球进行了优化,以显著提高生物打印的分辨率和精度。基于 FRESH 的三维生物打印技术的这一进步可以制造出具有类似于原生组织解剖学特性的高精度构造物,对组织工程和转化医学领域具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of Freeform Reversible Embedding of Suspended Hydrogel Microspheres for Substantially Improved Three-Dimensional Bioprinting Capabilities.

Three-dimensional (3D) bioprinting demonstrates technology that is capable of producing structures comparable to native tissues in the human body. The freeform reversible embedding of suspended hydrogels (FRESH) technique involves hydrogel-based bio-inks printed within a thermo-reversible support bath to provide mechanical strength to the printed construct. Smaller and more uniform microsphere sizes of FRESH were reported to aid in enhancing printing resolution and construct accuracy. Therefore, we sought to optimize the FRESH generation protocol, particularly by varying stir speed and stir duration, in hopes to further improve microsphere size and uniformity. We observed optimal conditions at a stir speed of 600 rpm and stir duration for 20 h that generated the smallest microspheres with the best uniformity. Comparison of using the optimized FRESH to the commercial FRESH LifeSupport to bioprint single filament and geometrical constructs revealed reduced single filament diameters and higher angular precision in the optimized FRESH bio-printed constructs compared with those printed in the commercial FRESH. Overall, our refinement of the FRESH manufacturing protocol represents an important step toward enhancing 3D bioprinting resolution and construct fidelity. Improving such technologies allows for the fabrication of highly accurate constructs with anatomical properties similar to native counterparts. Such work has significant implications in the field of tissue engineering for producing accurate human organ model systems. Impact statement Freeform reversible embedding of suspended hydrogels (FRESH) is a method of sacrificial three-dimensional (3D) bioprinting that offers support to reinforce bio-ink extrusion during printing. During FRESH generation, the stir speed and stir duration of the mixture can significantly impact FRESH microsphere characteristics. In this study, we optimized FRESH microspheres to significantly improve resolution and accuracy in bioprinting. This advancement in FRESH-based 3D bioprinting technologies allows for the fabrication of highly accurate constructs with anatomical properties similar to native counterparts and has significant implications in the field of tissue engineering and translational medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue engineering. Part C, Methods
Tissue engineering. Part C, Methods Medicine-Medicine (miscellaneous)
CiteScore
5.10
自引率
3.30%
发文量
136
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues. Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.
期刊最新文献
An Optimized Protocol for Multiple Immunohistochemical Staining of Fragile Tissue Samples. Design of an Innovative Method for Measuring the Contractile Behavior of Engineered Tissues. Enhancing Gingival-Derived Mesenchymal Stem Cell Potential in Tissue Engineering and Regenerative Medicine Through Paraprobiotics. Simple Methodology to Score Micropattern Quality and Effectiveness. Autoinduction-Based Quantification of In Situ TGF-β Activity in Native and Engineered Cartilage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1