Mehmet Temel, Katherine S Rudolph, Sunil K Agrawal
{"title":"健康受试者的步态恢复:智能膝关节支架对膝关节运动的扰动。","authors":"Mehmet Temel, Katherine S Rudolph, Sunil K Agrawal","doi":"10.1109/aim.2010.5695918","DOIUrl":null,"url":null,"abstract":"<p><p>Smart Knee Brace (SKB) is designed to provide controlled perturbations to the human knee during walking. A dynamic model of human walking is then used to evaluate the human applied joint torques to hypothesize how the human neuro-muscular system modulates the joint torques as a response to the perturbations caused on the gait. Our results show that the neuro-muscular response to perturbations can be reasonably well characterized by including the following features in the model: (i) normal gait in the absence of perturbation, (ii) corrective torque at a joint in response to the error at that joint and other joints, (iii) a characteristic time shift in the response. We believe that these parameters can be used to characterize subjects who are more prone to falling under gait perturbations.</p>","PeriodicalId":73326,"journal":{"name":"IEEE/ASME International Conference on Advanced Intelligent Mechatronics : [proceedings]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics","volume":"2010 ","pages":"527-532"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/aim.2010.5695918","citationCount":"0","resultStr":"{\"title\":\"Gait Recovery in Healthy Subjects: Perturbations to the Knee Motion with a Smart Knee Brace.\",\"authors\":\"Mehmet Temel, Katherine S Rudolph, Sunil K Agrawal\",\"doi\":\"10.1109/aim.2010.5695918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Smart Knee Brace (SKB) is designed to provide controlled perturbations to the human knee during walking. A dynamic model of human walking is then used to evaluate the human applied joint torques to hypothesize how the human neuro-muscular system modulates the joint torques as a response to the perturbations caused on the gait. Our results show that the neuro-muscular response to perturbations can be reasonably well characterized by including the following features in the model: (i) normal gait in the absence of perturbation, (ii) corrective torque at a joint in response to the error at that joint and other joints, (iii) a characteristic time shift in the response. We believe that these parameters can be used to characterize subjects who are more prone to falling under gait perturbations.</p>\",\"PeriodicalId\":73326,\"journal\":{\"name\":\"IEEE/ASME International Conference on Advanced Intelligent Mechatronics : [proceedings]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics\",\"volume\":\"2010 \",\"pages\":\"527-532\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/aim.2010.5695918\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ASME International Conference on Advanced Intelligent Mechatronics : [proceedings]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/aim.2010.5695918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ASME International Conference on Advanced Intelligent Mechatronics : [proceedings]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aim.2010.5695918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gait Recovery in Healthy Subjects: Perturbations to the Knee Motion with a Smart Knee Brace.
Smart Knee Brace (SKB) is designed to provide controlled perturbations to the human knee during walking. A dynamic model of human walking is then used to evaluate the human applied joint torques to hypothesize how the human neuro-muscular system modulates the joint torques as a response to the perturbations caused on the gait. Our results show that the neuro-muscular response to perturbations can be reasonably well characterized by including the following features in the model: (i) normal gait in the absence of perturbation, (ii) corrective torque at a joint in response to the error at that joint and other joints, (iii) a characteristic time shift in the response. We believe that these parameters can be used to characterize subjects who are more prone to falling under gait perturbations.