利用微流体技术和深度学习进行高通量细胞球体生产和组装分析

IF 2.5 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS SLAS Technology Pub Date : 2023-12-01 DOI:10.1016/j.slast.2023.03.003
Martin Trossbach , Emma Åkerlund , Krzysztof Langer , Brinton Seashore-Ludlow , Haakan N. Joensson
{"title":"利用微流体技术和深度学习进行高通量细胞球体生产和组装分析","authors":"Martin Trossbach ,&nbsp;Emma Åkerlund ,&nbsp;Krzysztof Langer ,&nbsp;Brinton Seashore-Ludlow ,&nbsp;Haakan N. Joensson","doi":"10.1016/j.slast.2023.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>3D cell culture models are important tools in translational research but have been out of reach for high-throughput screening due to complexity, requirement of large cell numbers and inadequate standardization. Microfluidics and culture model miniaturization technologies could overcome these challenges. Here, we present a high-throughput workflow to produce and characterize the formation of miniaturized spheroids using deep learning. We train a convolutional neural network (CNN) for cell ensemble morphology classification for droplet microfluidic minispheroid production, benchmark it against more conventional image analysis, and characterize minispheroid assembly determining optimal surfactant concentrations and incubation times for minispheroid production for three cell lines with different spheroid formation properties. Notably, this format is compatible with large-scale spheroid production and screening. The presented workflow and CNN offer a template for large scale minispheroid production and analysis and can be extended and re-trained to characterize morphological responses in spheroids to additives, culture conditions and large drug libraries.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472630323000171/pdfft?md5=68d7a927c100210724a99bd550dd2236&pid=1-s2.0-S2472630323000171-main.pdf","citationCount":"0","resultStr":"{\"title\":\"High-throughput cell spheroid production and assembly analysis by microfluidics and deep learning\",\"authors\":\"Martin Trossbach ,&nbsp;Emma Åkerlund ,&nbsp;Krzysztof Langer ,&nbsp;Brinton Seashore-Ludlow ,&nbsp;Haakan N. Joensson\",\"doi\":\"10.1016/j.slast.2023.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>3D cell culture models are important tools in translational research but have been out of reach for high-throughput screening due to complexity, requirement of large cell numbers and inadequate standardization. Microfluidics and culture model miniaturization technologies could overcome these challenges. Here, we present a high-throughput workflow to produce and characterize the formation of miniaturized spheroids using deep learning. We train a convolutional neural network (CNN) for cell ensemble morphology classification for droplet microfluidic minispheroid production, benchmark it against more conventional image analysis, and characterize minispheroid assembly determining optimal surfactant concentrations and incubation times for minispheroid production for three cell lines with different spheroid formation properties. Notably, this format is compatible with large-scale spheroid production and screening. The presented workflow and CNN offer a template for large scale minispheroid production and analysis and can be extended and re-trained to characterize morphological responses in spheroids to additives, culture conditions and large drug libraries.</p></div>\",\"PeriodicalId\":54248,\"journal\":{\"name\":\"SLAS Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2472630323000171/pdfft?md5=68d7a927c100210724a99bd550dd2236&pid=1-s2.0-S2472630323000171-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2472630323000171\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630323000171","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

三维细胞培养模型是翻译研究的重要工具,但由于其复杂性、对大量细胞数量的要求以及标准化程度不足,高通量筛选一直难以实现。微流体和培养模型小型化技术可以克服这些挑战。在这里,我们提出了一个高通量的工作流程,以产生和表征微型球体的形成使用深度学习。我们训练了一个卷积神经网络(CNN)用于微液滴微流体微球生成的细胞集合形态分类,将其与更传统的图像分析进行比较,并对微球组装进行表征,确定三种具有不同球体形成特性的细胞系的最佳表面活性剂浓度和微球生成的孵育时间。值得注意的是,这种格式与大规模球体生产和筛选兼容。所提出的工作流程和CNN为大规模微型球体的生产和分析提供了模板,并且可以扩展和重新训练,以表征球体对添加剂、培养条件和大型药物库的形态响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-throughput cell spheroid production and assembly analysis by microfluidics and deep learning

3D cell culture models are important tools in translational research but have been out of reach for high-throughput screening due to complexity, requirement of large cell numbers and inadequate standardization. Microfluidics and culture model miniaturization technologies could overcome these challenges. Here, we present a high-throughput workflow to produce and characterize the formation of miniaturized spheroids using deep learning. We train a convolutional neural network (CNN) for cell ensemble morphology classification for droplet microfluidic minispheroid production, benchmark it against more conventional image analysis, and characterize minispheroid assembly determining optimal surfactant concentrations and incubation times for minispheroid production for three cell lines with different spheroid formation properties. Notably, this format is compatible with large-scale spheroid production and screening. The presented workflow and CNN offer a template for large scale minispheroid production and analysis and can be extended and re-trained to characterize morphological responses in spheroids to additives, culture conditions and large drug libraries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SLAS Technology
SLAS Technology Computer Science-Computer Science Applications
CiteScore
6.30
自引率
7.40%
发文量
47
审稿时长
106 days
期刊介绍: SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.
期刊最新文献
Management of experimental workflows in robotic cultivation platforms. Application of conjugated polymer nanocomposite materials as biosensors in rehabilitation of ankle joint injuries in martial arts sports. Identification of m6A-related lncRNAs prognostic signature for predicting immunotherapy response in cervical cancer Regional developers’ community accelerates laboratory automation Accelerating covalent binding studies: Direct mass shift measurement with acoustic ejection and TOF-MS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1