Martin Trossbach , Emma Åkerlund , Krzysztof Langer , Brinton Seashore-Ludlow , Haakan N. Joensson
{"title":"利用微流体技术和深度学习进行高通量细胞球体生产和组装分析","authors":"Martin Trossbach , Emma Åkerlund , Krzysztof Langer , Brinton Seashore-Ludlow , Haakan N. Joensson","doi":"10.1016/j.slast.2023.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>3D cell culture models are important tools in translational research but have been out of reach for high-throughput screening due to complexity, requirement of large cell numbers and inadequate standardization. Microfluidics and culture model miniaturization technologies could overcome these challenges. Here, we present a high-throughput workflow to produce and characterize the formation of miniaturized spheroids using deep learning. We train a convolutional neural network (CNN) for cell ensemble morphology classification for droplet microfluidic minispheroid production, benchmark it against more conventional image analysis, and characterize minispheroid assembly determining optimal surfactant concentrations and incubation times for minispheroid production for three cell lines with different spheroid formation properties. Notably, this format is compatible with large-scale spheroid production and screening. The presented workflow and CNN offer a template for large scale minispheroid production and analysis and can be extended and re-trained to characterize morphological responses in spheroids to additives, culture conditions and large drug libraries.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472630323000171/pdfft?md5=68d7a927c100210724a99bd550dd2236&pid=1-s2.0-S2472630323000171-main.pdf","citationCount":"0","resultStr":"{\"title\":\"High-throughput cell spheroid production and assembly analysis by microfluidics and deep learning\",\"authors\":\"Martin Trossbach , Emma Åkerlund , Krzysztof Langer , Brinton Seashore-Ludlow , Haakan N. Joensson\",\"doi\":\"10.1016/j.slast.2023.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>3D cell culture models are important tools in translational research but have been out of reach for high-throughput screening due to complexity, requirement of large cell numbers and inadequate standardization. Microfluidics and culture model miniaturization technologies could overcome these challenges. Here, we present a high-throughput workflow to produce and characterize the formation of miniaturized spheroids using deep learning. We train a convolutional neural network (CNN) for cell ensemble morphology classification for droplet microfluidic minispheroid production, benchmark it against more conventional image analysis, and characterize minispheroid assembly determining optimal surfactant concentrations and incubation times for minispheroid production for three cell lines with different spheroid formation properties. Notably, this format is compatible with large-scale spheroid production and screening. The presented workflow and CNN offer a template for large scale minispheroid production and analysis and can be extended and re-trained to characterize morphological responses in spheroids to additives, culture conditions and large drug libraries.</p></div>\",\"PeriodicalId\":54248,\"journal\":{\"name\":\"SLAS Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2472630323000171/pdfft?md5=68d7a927c100210724a99bd550dd2236&pid=1-s2.0-S2472630323000171-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2472630323000171\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630323000171","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
High-throughput cell spheroid production and assembly analysis by microfluidics and deep learning
3D cell culture models are important tools in translational research but have been out of reach for high-throughput screening due to complexity, requirement of large cell numbers and inadequate standardization. Microfluidics and culture model miniaturization technologies could overcome these challenges. Here, we present a high-throughput workflow to produce and characterize the formation of miniaturized spheroids using deep learning. We train a convolutional neural network (CNN) for cell ensemble morphology classification for droplet microfluidic minispheroid production, benchmark it against more conventional image analysis, and characterize minispheroid assembly determining optimal surfactant concentrations and incubation times for minispheroid production for three cell lines with different spheroid formation properties. Notably, this format is compatible with large-scale spheroid production and screening. The presented workflow and CNN offer a template for large scale minispheroid production and analysis and can be extended and re-trained to characterize morphological responses in spheroids to additives, culture conditions and large drug libraries.
期刊介绍:
SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.