{"title":"自动阿片类药物风险评分:医疗保健中机器学习引起的认知不公正的案例。","authors":"Giorgia Pozzi","doi":"10.1007/s10676-023-09676-z","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence-based (AI) technologies such as machine learning (ML) systems are playing an increasingly relevant role in medicine and healthcare, bringing about novel ethical and epistemological issues that need to be timely addressed. Even though ethical questions connected to epistemic concerns have been at the center of the debate, it is going unnoticed how epistemic forms of injustice can be ML-induced, specifically in healthcare. I analyze the shortcomings of an ML system currently deployed in the USA to predict patients' likelihood of opioid addiction and misuse (PDMP algorithmic platforms). Drawing on this analysis, I aim to show that the wrong inflicted on epistemic agents involved in and affected by these systems' decision-making processes can be captured through the lenses of Miranda Fricker's account of <i>hermeneutical injustice</i>. I further argue that ML-induced hermeneutical injustice is particularly harmful due to what I define as an <i>automated hermeneutical appropriation</i> from the side of the ML system. The latter occurs if the ML system establishes meanings and shared hermeneutical resources without allowing for human oversight, impairing understanding and communication practices among stakeholders involved in medical decision-making. Furthermore and very much crucially, an automated hermeneutical appropriation can be recognized if physicians are strongly limited in their possibilities to safeguard patients from ML-induced hermeneutical injustice. Overall, my paper should expand the analysis of ethical issues raised by ML systems that are to be considered epistemic in nature, thus contributing to bridging the gap between these two dimensions in the ongoing debate.</p>","PeriodicalId":51495,"journal":{"name":"Ethics and Information Technology","volume":"25 1","pages":"3"},"PeriodicalIF":3.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869303/pdf/","citationCount":"5","resultStr":"{\"title\":\"Automated opioid risk scores: a case for machine learning-induced epistemic injustice in healthcare.\",\"authors\":\"Giorgia Pozzi\",\"doi\":\"10.1007/s10676-023-09676-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence-based (AI) technologies such as machine learning (ML) systems are playing an increasingly relevant role in medicine and healthcare, bringing about novel ethical and epistemological issues that need to be timely addressed. Even though ethical questions connected to epistemic concerns have been at the center of the debate, it is going unnoticed how epistemic forms of injustice can be ML-induced, specifically in healthcare. I analyze the shortcomings of an ML system currently deployed in the USA to predict patients' likelihood of opioid addiction and misuse (PDMP algorithmic platforms). Drawing on this analysis, I aim to show that the wrong inflicted on epistemic agents involved in and affected by these systems' decision-making processes can be captured through the lenses of Miranda Fricker's account of <i>hermeneutical injustice</i>. I further argue that ML-induced hermeneutical injustice is particularly harmful due to what I define as an <i>automated hermeneutical appropriation</i> from the side of the ML system. The latter occurs if the ML system establishes meanings and shared hermeneutical resources without allowing for human oversight, impairing understanding and communication practices among stakeholders involved in medical decision-making. Furthermore and very much crucially, an automated hermeneutical appropriation can be recognized if physicians are strongly limited in their possibilities to safeguard patients from ML-induced hermeneutical injustice. Overall, my paper should expand the analysis of ethical issues raised by ML systems that are to be considered epistemic in nature, thus contributing to bridging the gap between these two dimensions in the ongoing debate.</p>\",\"PeriodicalId\":51495,\"journal\":{\"name\":\"Ethics and Information Technology\",\"volume\":\"25 1\",\"pages\":\"3\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869303/pdf/\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ethics and Information Technology\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1007/s10676-023-09676-z\",\"RegionNum\":2,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ETHICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ethics and Information Technology","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1007/s10676-023-09676-z","RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ETHICS","Score":null,"Total":0}
Automated opioid risk scores: a case for machine learning-induced epistemic injustice in healthcare.
Artificial intelligence-based (AI) technologies such as machine learning (ML) systems are playing an increasingly relevant role in medicine and healthcare, bringing about novel ethical and epistemological issues that need to be timely addressed. Even though ethical questions connected to epistemic concerns have been at the center of the debate, it is going unnoticed how epistemic forms of injustice can be ML-induced, specifically in healthcare. I analyze the shortcomings of an ML system currently deployed in the USA to predict patients' likelihood of opioid addiction and misuse (PDMP algorithmic platforms). Drawing on this analysis, I aim to show that the wrong inflicted on epistemic agents involved in and affected by these systems' decision-making processes can be captured through the lenses of Miranda Fricker's account of hermeneutical injustice. I further argue that ML-induced hermeneutical injustice is particularly harmful due to what I define as an automated hermeneutical appropriation from the side of the ML system. The latter occurs if the ML system establishes meanings and shared hermeneutical resources without allowing for human oversight, impairing understanding and communication practices among stakeholders involved in medical decision-making. Furthermore and very much crucially, an automated hermeneutical appropriation can be recognized if physicians are strongly limited in their possibilities to safeguard patients from ML-induced hermeneutical injustice. Overall, my paper should expand the analysis of ethical issues raised by ML systems that are to be considered epistemic in nature, thus contributing to bridging the gap between these two dimensions in the ongoing debate.
期刊介绍:
Ethics and Information Technology is a peer-reviewed journal dedicated to advancing the dialogue between moral philosophy and the field of information and communication technology (ICT). The journal aims to foster and promote reflection and analysis which is intended to make a constructive contribution to answering the ethical, social and political questions associated with the adoption, use, and development of ICT. Within the scope of the journal are also conceptual analysis and discussion of ethical ICT issues which arise in the context of technology assessment, cultural studies, public policy analysis and public administration, cognitive science, social and anthropological studies in technology, mass-communication, and legal studies.