{"title":"大蒜乙醇提取物对瑞舍平诱导的 Wistar 大鼠肝脏毒性的保护作用","authors":"Khushboo, Vivek Kumar Gupta, Bechan Sharma","doi":"10.1007/s12291-022-01045-9","DOIUrl":null,"url":null,"abstract":"<p><p>Reserpine, a bioactive compound isolated from the roots of <i>Rauwolfia serpentine</i>, is known to deplete dopamine, a neurotransmitter. The clinical application of reserpine has been associated to manage hypertension, insanity, insomnia and schizophrenia. However, the usage of reserpine as a drug is restricted because of its ability of inducing excess free radicals production and oxidative stress resulting into damage to liver and other organs. Here, we have explored the antioxidative potential of extract of garlic prepared using ethanol (EEG) against reserpine-induced hepatic damage in the albino Wister rats.The animals were divided into four different groups containing 6 animals in each: (1) control + placebo, (2) control + EEG, (3) reserpine and (4) reserpine with EEG. The reserpine treatment resulted into sharp increase in the level of MDA and significant reduction in the activitiesof key antioxidative enzymes (SOD, GST, and CAT) in the rat liver. It also caused sharp perturbations in the levels of certain hepatic transaminases (ALT, AST) and glycolytic LDH. The histopathological results revealed hepatic necrosis, which could have occurred due to reserpine induced lipid peroxidation as well as reduction in the levels of antioxidant species.The administration of EEG, however, significantly ameliorated reserpine induced hepatotoxicity. These results reflected the ameliorative property of EEG, which was probably mediated via its antioxidant function as it contains several bioactive molecules with free radical quenching potential.This study suggestedthe prospective application of EEG as a supplement to combat the side effects of reserpine.</p>","PeriodicalId":13280,"journal":{"name":"Indian Journal of Clinical Biochemistry","volume":"38 2","pages":"251-261"},"PeriodicalIF":1.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070574/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hepatoprotective Effect of Ethanolic Extract of Garlic Against Reserpine Induced Toxicity in Wistar Rats.\",\"authors\":\"Khushboo, Vivek Kumar Gupta, Bechan Sharma\",\"doi\":\"10.1007/s12291-022-01045-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reserpine, a bioactive compound isolated from the roots of <i>Rauwolfia serpentine</i>, is known to deplete dopamine, a neurotransmitter. The clinical application of reserpine has been associated to manage hypertension, insanity, insomnia and schizophrenia. However, the usage of reserpine as a drug is restricted because of its ability of inducing excess free radicals production and oxidative stress resulting into damage to liver and other organs. Here, we have explored the antioxidative potential of extract of garlic prepared using ethanol (EEG) against reserpine-induced hepatic damage in the albino Wister rats.The animals were divided into four different groups containing 6 animals in each: (1) control + placebo, (2) control + EEG, (3) reserpine and (4) reserpine with EEG. The reserpine treatment resulted into sharp increase in the level of MDA and significant reduction in the activitiesof key antioxidative enzymes (SOD, GST, and CAT) in the rat liver. It also caused sharp perturbations in the levels of certain hepatic transaminases (ALT, AST) and glycolytic LDH. The histopathological results revealed hepatic necrosis, which could have occurred due to reserpine induced lipid peroxidation as well as reduction in the levels of antioxidant species.The administration of EEG, however, significantly ameliorated reserpine induced hepatotoxicity. These results reflected the ameliorative property of EEG, which was probably mediated via its antioxidant function as it contains several bioactive molecules with free radical quenching potential.This study suggestedthe prospective application of EEG as a supplement to combat the side effects of reserpine.</p>\",\"PeriodicalId\":13280,\"journal\":{\"name\":\"Indian Journal of Clinical Biochemistry\",\"volume\":\"38 2\",\"pages\":\"251-261\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070574/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Clinical Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12291-022-01045-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Clinical Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12291-022-01045-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/14 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Hepatoprotective Effect of Ethanolic Extract of Garlic Against Reserpine Induced Toxicity in Wistar Rats.
Reserpine, a bioactive compound isolated from the roots of Rauwolfia serpentine, is known to deplete dopamine, a neurotransmitter. The clinical application of reserpine has been associated to manage hypertension, insanity, insomnia and schizophrenia. However, the usage of reserpine as a drug is restricted because of its ability of inducing excess free radicals production and oxidative stress resulting into damage to liver and other organs. Here, we have explored the antioxidative potential of extract of garlic prepared using ethanol (EEG) against reserpine-induced hepatic damage in the albino Wister rats.The animals were divided into four different groups containing 6 animals in each: (1) control + placebo, (2) control + EEG, (3) reserpine and (4) reserpine with EEG. The reserpine treatment resulted into sharp increase in the level of MDA and significant reduction in the activitiesof key antioxidative enzymes (SOD, GST, and CAT) in the rat liver. It also caused sharp perturbations in the levels of certain hepatic transaminases (ALT, AST) and glycolytic LDH. The histopathological results revealed hepatic necrosis, which could have occurred due to reserpine induced lipid peroxidation as well as reduction in the levels of antioxidant species.The administration of EEG, however, significantly ameliorated reserpine induced hepatotoxicity. These results reflected the ameliorative property of EEG, which was probably mediated via its antioxidant function as it contains several bioactive molecules with free radical quenching potential.This study suggestedthe prospective application of EEG as a supplement to combat the side effects of reserpine.
期刊介绍:
The primary mission of the journal is to promote improvement in the health and well-being of community through the development and practice of clinical biochemistry and dissemination of knowledge and recent advances in this discipline among professionals, diagnostics industry, government and non-government organizations. Indian Journal of Clinical Biochemistry (IJCB) publishes peer reviewed articles that contribute to the existing knowledge in all fields of Clinical biochemistry, either experimental or theoretical, particularly deal with the applications of biochemistry, molecular biology, genetics, biotechnology, and immunology to the diagnosis, treatment, monitoring and prevention of human diseases. The articles published also include those covering the analytical and molecular diagnostic techniques, instrumentation, data processing, quality assurance and accreditation aspects of the clinical investigations in which chemistry has played a major role, or laboratory animal studies with biochemical and clinical relevance.