扩张型心肌病患者CTSB启动子多态性与功能的相关性分析

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-04-01 DOI:10.1089/dna.2022.0525
Yu Zhou, Shuang Gao, Liangcai Ding, Han Yan, Shuchao Pang, Bo Yan
{"title":"扩张型心肌病患者CTSB启动子多态性与功能的相关性分析","authors":"Yu Zhou,&nbsp;Shuang Gao,&nbsp;Liangcai Ding,&nbsp;Han Yan,&nbsp;Shuchao Pang,&nbsp;Bo Yan","doi":"10.1089/dna.2022.0525","DOIUrl":null,"url":null,"abstract":"<p><p>Dilated cardiomyopathy (DCM) is caused by a combination of genetic susceptibility and environmental factors. Cathepsin B affects the pathogenesis of DCM; however, its molecular mechanism is still unclear. In this study, we examined the association of rare <i>CTSB</i> variants with the occurrence of DCM. This case-control study involved 394 participants: 142 patients with DCM and 252 healthy controls. DNA was extracted from the peripheral leukocytes of all participants, and <i>CTSB</i> variants were analyzed and identified using polymerase chain reaction amplification. Functional analysis was performed using the dual-luciferase reporter assay, and the ability of genetic <i>CTSB</i> variants to bind to transcription factors (TFs) was analyzed and validated using the electrophoretic mobility shift assay (EMSA). Two single-nucleotide polymorphisms (SNPs) were identified in the study population. One SNP, g.4803 T > C (rs1293312), was more common in patients with DCM. A second SNP, g.4954 T > A (rs942670850), was identified in two patients with DCM. Both SNPs significantly enhanced the transcriptional activity of <i>CTSB</i> promoters. An analysis using the TRANSFAC database revealed that these SNPs affect TF binding, which was confirmed using the EMSA. Our results demonstrate that within the <i>CTSB</i> promoter, the genetic variants g.4803T>C (rs1293312) and g.4954 T > A (rs942670850) are rare risk factors for DCM development.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlation Analysis of <i>CTSB</i> Promoter Polymorphism and Function in Patients with Dilated Cardiomyopathy.\",\"authors\":\"Yu Zhou,&nbsp;Shuang Gao,&nbsp;Liangcai Ding,&nbsp;Han Yan,&nbsp;Shuchao Pang,&nbsp;Bo Yan\",\"doi\":\"10.1089/dna.2022.0525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dilated cardiomyopathy (DCM) is caused by a combination of genetic susceptibility and environmental factors. Cathepsin B affects the pathogenesis of DCM; however, its molecular mechanism is still unclear. In this study, we examined the association of rare <i>CTSB</i> variants with the occurrence of DCM. This case-control study involved 394 participants: 142 patients with DCM and 252 healthy controls. DNA was extracted from the peripheral leukocytes of all participants, and <i>CTSB</i> variants were analyzed and identified using polymerase chain reaction amplification. Functional analysis was performed using the dual-luciferase reporter assay, and the ability of genetic <i>CTSB</i> variants to bind to transcription factors (TFs) was analyzed and validated using the electrophoretic mobility shift assay (EMSA). Two single-nucleotide polymorphisms (SNPs) were identified in the study population. One SNP, g.4803 T > C (rs1293312), was more common in patients with DCM. A second SNP, g.4954 T > A (rs942670850), was identified in two patients with DCM. Both SNPs significantly enhanced the transcriptional activity of <i>CTSB</i> promoters. An analysis using the TRANSFAC database revealed that these SNPs affect TF binding, which was confirmed using the EMSA. Our results demonstrate that within the <i>CTSB</i> promoter, the genetic variants g.4803T>C (rs1293312) and g.4954 T > A (rs942670850) are rare risk factors for DCM development.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/dna.2022.0525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/dna.2022.0525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

扩张型心肌病(DCM)由遗传易感性和环境因素共同引起。组织蛋白酶B影响DCM的发病机制;然而,其分子机制尚不清楚。在这项研究中,我们研究了罕见的CTSB变异与DCM发生的关系。这项病例对照研究涉及394名参与者:142名DCM患者和252名健康对照者。从所有参与者的外周白细胞中提取DNA,并使用聚合酶链反应扩增分析和鉴定CTSB变异。使用双荧光素酶报告基因法进行功能分析,并使用电泳迁移迁移试验(EMSA)分析和验证遗传CTSB变异与转录因子(TFs)结合的能力。在研究人群中发现了两个单核苷酸多态性(snp)。一个SNP, g.4803T > C (rs1293312)在DCM患者中更为常见。第二个SNP, g.4954在2例DCM患者中鉴定出T > A (rs942670850)。这两个snp都显著增强了CTSB启动子的转录活性。使用TRANSFAC数据库进行的分析显示,这些snp影响TF结合,这一点通过EMSA得到了证实。我们的研究结果表明,在CTSB启动子内,遗传变异g.4803T>C (rs1293312)和g.4954T > A (rs942670850)是DCM发展的罕见危险因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Correlation Analysis of CTSB Promoter Polymorphism and Function in Patients with Dilated Cardiomyopathy.

Dilated cardiomyopathy (DCM) is caused by a combination of genetic susceptibility and environmental factors. Cathepsin B affects the pathogenesis of DCM; however, its molecular mechanism is still unclear. In this study, we examined the association of rare CTSB variants with the occurrence of DCM. This case-control study involved 394 participants: 142 patients with DCM and 252 healthy controls. DNA was extracted from the peripheral leukocytes of all participants, and CTSB variants were analyzed and identified using polymerase chain reaction amplification. Functional analysis was performed using the dual-luciferase reporter assay, and the ability of genetic CTSB variants to bind to transcription factors (TFs) was analyzed and validated using the electrophoretic mobility shift assay (EMSA). Two single-nucleotide polymorphisms (SNPs) were identified in the study population. One SNP, g.4803 T > C (rs1293312), was more common in patients with DCM. A second SNP, g.4954 T > A (rs942670850), was identified in two patients with DCM. Both SNPs significantly enhanced the transcriptional activity of CTSB promoters. An analysis using the TRANSFAC database revealed that these SNPs affect TF binding, which was confirmed using the EMSA. Our results demonstrate that within the CTSB promoter, the genetic variants g.4803T>C (rs1293312) and g.4954 T > A (rs942670850) are rare risk factors for DCM development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1