Veronika Kolešková, Miroslav E Šálek, Kateřina Brynychová, Petr Chajma, Lucie Pešková, Esmat Elhassan, Eva Petrusová Vozabulová, Veronika Janatová, Aisha Almuhery, Martin Sládeček
{"title":"生活在不同气候条件下的早熟鸟类的后代热需求和亲代孵化效率不同。","authors":"Veronika Kolešková, Miroslav E Šálek, Kateřina Brynychová, Petr Chajma, Lucie Pešková, Esmat Elhassan, Eva Petrusová Vozabulová, Veronika Janatová, Aisha Almuhery, Martin Sládeček","doi":"10.1186/s12983-023-00492-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chicks of precocial birds hatch well-developed and can search actively for food but their homeothermy develops gradually during growth. This makes them dependent on heat provided by parents (\"brooding\"), which is then traded off against other activities, mainly foraging. Although brooding has been documented in many precocial birds, little is known about the differences in the amount and efficiency of brooding care, brooding diel rhythmicity, and impact on the chick's growth, particularly between species living in different climatic conditions.</p><p><strong>Results: </strong>We used multisensory dataloggers to evaluate brooding patterns in two congeneric species inhabiting contrasting climate zones: temperate Northern lapwing (Vanellus vanellus) and desert Red-wattled lapwing (Vanellus indicus). In accordance with our expectation, the adult desert lapwings brooded the chicks slightly less compared to the adult temperate lapwings. However, the desert lapwings brooded their chicks in higher ambient temperatures and less efficiently (i.e. they could not reach the same brooding temperature as the temperate lapwings), which are new and hitherto unknown brooding patterns in precocial birds. In both species, night brooding prevailed even during warm nights, suggesting a general brooding rule among birds. Although the high rates of brooding can reduce the time spent by foraging, we found no negative effect of the high brooding rate on the growth rate in either species.</p><p><strong>Conclusions: </strong>Our data suggest that the chicks of species breeding in colder climates may reduce their thermal demands, while their parents may increase the efficiency of parental brooding care. More research is however needed to confirm this as a rule across species.</p>","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084700/pdf/","citationCount":"0","resultStr":"{\"title\":\"Offspring thermal demands and parental brooding efficiency differ for precocial birds living in contrasting climates.\",\"authors\":\"Veronika Kolešková, Miroslav E Šálek, Kateřina Brynychová, Petr Chajma, Lucie Pešková, Esmat Elhassan, Eva Petrusová Vozabulová, Veronika Janatová, Aisha Almuhery, Martin Sládeček\",\"doi\":\"10.1186/s12983-023-00492-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Chicks of precocial birds hatch well-developed and can search actively for food but their homeothermy develops gradually during growth. This makes them dependent on heat provided by parents (\\\"brooding\\\"), which is then traded off against other activities, mainly foraging. Although brooding has been documented in many precocial birds, little is known about the differences in the amount and efficiency of brooding care, brooding diel rhythmicity, and impact on the chick's growth, particularly between species living in different climatic conditions.</p><p><strong>Results: </strong>We used multisensory dataloggers to evaluate brooding patterns in two congeneric species inhabiting contrasting climate zones: temperate Northern lapwing (Vanellus vanellus) and desert Red-wattled lapwing (Vanellus indicus). In accordance with our expectation, the adult desert lapwings brooded the chicks slightly less compared to the adult temperate lapwings. However, the desert lapwings brooded their chicks in higher ambient temperatures and less efficiently (i.e. they could not reach the same brooding temperature as the temperate lapwings), which are new and hitherto unknown brooding patterns in precocial birds. In both species, night brooding prevailed even during warm nights, suggesting a general brooding rule among birds. Although the high rates of brooding can reduce the time spent by foraging, we found no negative effect of the high brooding rate on the growth rate in either species.</p><p><strong>Conclusions: </strong>Our data suggest that the chicks of species breeding in colder climates may reduce their thermal demands, while their parents may increase the efficiency of parental brooding care. More research is however needed to confirm this as a rule across species.</p>\",\"PeriodicalId\":55142,\"journal\":{\"name\":\"Frontiers in Zoology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084700/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12983-023-00492-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12983-023-00492-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
Offspring thermal demands and parental brooding efficiency differ for precocial birds living in contrasting climates.
Background: Chicks of precocial birds hatch well-developed and can search actively for food but their homeothermy develops gradually during growth. This makes them dependent on heat provided by parents ("brooding"), which is then traded off against other activities, mainly foraging. Although brooding has been documented in many precocial birds, little is known about the differences in the amount and efficiency of brooding care, brooding diel rhythmicity, and impact on the chick's growth, particularly between species living in different climatic conditions.
Results: We used multisensory dataloggers to evaluate brooding patterns in two congeneric species inhabiting contrasting climate zones: temperate Northern lapwing (Vanellus vanellus) and desert Red-wattled lapwing (Vanellus indicus). In accordance with our expectation, the adult desert lapwings brooded the chicks slightly less compared to the adult temperate lapwings. However, the desert lapwings brooded their chicks in higher ambient temperatures and less efficiently (i.e. they could not reach the same brooding temperature as the temperate lapwings), which are new and hitherto unknown brooding patterns in precocial birds. In both species, night brooding prevailed even during warm nights, suggesting a general brooding rule among birds. Although the high rates of brooding can reduce the time spent by foraging, we found no negative effect of the high brooding rate on the growth rate in either species.
Conclusions: Our data suggest that the chicks of species breeding in colder climates may reduce their thermal demands, while their parents may increase the efficiency of parental brooding care. More research is however needed to confirm this as a rule across species.
期刊介绍:
Frontiers in Zoology is an open access, peer-reviewed online journal publishing high quality research articles and reviews on all aspects of animal life.
As a biological discipline, zoology has one of the longest histories. Today it occasionally appears as though, due to the rapid expansion of life sciences, zoology has been replaced by more or less independent sub-disciplines amongst which exchange is often sparse. However, the recent advance of molecular methodology into "classical" fields of biology, and the development of theories that can explain phenomena on different levels of organisation, has led to a re-integration of zoological disciplines promoting a broader than usual approach to zoological questions. Zoology has re-emerged as an integrative discipline encompassing the most diverse aspects of animal life, from the level of the gene to the level of the ecosystem.
Frontiers in Zoology is the first open access journal focusing on zoology as a whole. It aims to represent and re-unite the various disciplines that look at animal life from different perspectives and at providing the basis for a comprehensive understanding of zoological phenomena on all levels of analysis. Frontiers in Zoology provides a unique opportunity to publish high quality research and reviews on zoological issues that will be internationally accessible to any reader at no cost.
The journal was initiated and is supported by the Deutsche Zoologische Gesellschaft, one of the largest national zoological societies with more than a century-long tradition in promoting high-level zoological research.