国家多中心人工智能近视防治项目

IF 4.4 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Intelligent medicine Pub Date : 2021-08-01 DOI:10.1016/j.imed.2021.05.001
Xun Wang , Yahan Yang , Yuxuan Wu , Wenbin Wei , Li Dong , Yang Li , Xingping Tan , Hankun Cao , Hong Zhang , Xiaodan Ma , Qin Jiang , Yunfan Zhou , Weihua Yang , Chaoyu Li , Yu Gu , Lin Ding , Yanli Qin , Qi Chen , Lili Li , Mingyue Lian , Haotian Lin
{"title":"国家多中心人工智能近视防治项目","authors":"Xun Wang ,&nbsp;Yahan Yang ,&nbsp;Yuxuan Wu ,&nbsp;Wenbin Wei ,&nbsp;Li Dong ,&nbsp;Yang Li ,&nbsp;Xingping Tan ,&nbsp;Hankun Cao ,&nbsp;Hong Zhang ,&nbsp;Xiaodan Ma ,&nbsp;Qin Jiang ,&nbsp;Yunfan Zhou ,&nbsp;Weihua Yang ,&nbsp;Chaoyu Li ,&nbsp;Yu Gu ,&nbsp;Lin Ding ,&nbsp;Yanli Qin ,&nbsp;Qi Chen ,&nbsp;Lili Li ,&nbsp;Mingyue Lian ,&nbsp;Haotian Lin","doi":"10.1016/j.imed.2021.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, the incidence of myopia has increased at an alarming rate among children and adolescents in China. The exploration of an effective prevention and control method for myopia is in urgent need. With the development of information technology in the past decade, artificial intelligence with the Internet of Things technology (AIoT) is characterized by strong computing power, advanced algorithm, continuous monitoring, and accurate prediction of long-term progression. Therefore, big data and artificial intelligence technology have the potential to be applied to data mining of myopia etiology and prediction of myopia occurrence and development. More recently, there has been a growing recognition that myopia study involving AIoT needs to undergo a rigorous evaluation to demonstrate robust results.</p></div>","PeriodicalId":73400,"journal":{"name":"Intelligent medicine","volume":"1 2","pages":"Pages 51-55"},"PeriodicalIF":4.4000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.imed.2021.05.001","citationCount":"2","resultStr":"{\"title\":\"The national multi-center artificial intelligent myopia prevention and control project\",\"authors\":\"Xun Wang ,&nbsp;Yahan Yang ,&nbsp;Yuxuan Wu ,&nbsp;Wenbin Wei ,&nbsp;Li Dong ,&nbsp;Yang Li ,&nbsp;Xingping Tan ,&nbsp;Hankun Cao ,&nbsp;Hong Zhang ,&nbsp;Xiaodan Ma ,&nbsp;Qin Jiang ,&nbsp;Yunfan Zhou ,&nbsp;Weihua Yang ,&nbsp;Chaoyu Li ,&nbsp;Yu Gu ,&nbsp;Lin Ding ,&nbsp;Yanli Qin ,&nbsp;Qi Chen ,&nbsp;Lili Li ,&nbsp;Mingyue Lian ,&nbsp;Haotian Lin\",\"doi\":\"10.1016/j.imed.2021.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, the incidence of myopia has increased at an alarming rate among children and adolescents in China. The exploration of an effective prevention and control method for myopia is in urgent need. With the development of information technology in the past decade, artificial intelligence with the Internet of Things technology (AIoT) is characterized by strong computing power, advanced algorithm, continuous monitoring, and accurate prediction of long-term progression. Therefore, big data and artificial intelligence technology have the potential to be applied to data mining of myopia etiology and prediction of myopia occurrence and development. More recently, there has been a growing recognition that myopia study involving AIoT needs to undergo a rigorous evaluation to demonstrate robust results.</p></div>\",\"PeriodicalId\":73400,\"journal\":{\"name\":\"Intelligent medicine\",\"volume\":\"1 2\",\"pages\":\"Pages 51-55\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.imed.2021.05.001\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667102621000085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667102621000085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

摘要

近年来,中国儿童和青少年的近视发病率以惊人的速度增长。迫切需要探索一种有效的近视防治方法。近十年来,随着信息技术的发展,以物联网技术(AIoT)为代表的人工智能具有计算能力强、算法先进、持续监测、对长期进展进行准确预测等特点。因此,大数据和人工智能技术具有应用于近视病因数据挖掘和近视发生发展预测的潜力。最近,越来越多的人认识到,涉及AIoT的近视研究需要经过严格的评估才能证明可靠的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The national multi-center artificial intelligent myopia prevention and control project

In recent years, the incidence of myopia has increased at an alarming rate among children and adolescents in China. The exploration of an effective prevention and control method for myopia is in urgent need. With the development of information technology in the past decade, artificial intelligence with the Internet of Things technology (AIoT) is characterized by strong computing power, advanced algorithm, continuous monitoring, and accurate prediction of long-term progression. Therefore, big data and artificial intelligence technology have the potential to be applied to data mining of myopia etiology and prediction of myopia occurrence and development. More recently, there has been a growing recognition that myopia study involving AIoT needs to undergo a rigorous evaluation to demonstrate robust results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligent medicine
Intelligent medicine Surgery, Radiology and Imaging, Artificial Intelligence, Biomedical Engineering
CiteScore
5.20
自引率
0.00%
发文量
19
期刊最新文献
Impact of data balancing a multiclass dataset before the creation of association rules to study bacterial vaginosis Neuropsychological detection and prediction using machine learning algorithms: a comprehensive review Improved neurological diagnoses and treatment strategies via automated human brain tissue segmentation from clinical magnetic resonance imaging Increasing the accuracy and reproducibility of positron emission tomography radiomics for predicting pelvic lymph node metastasis in patients with cervical cancer using 3D local binary pattern-based texture features A clinical decision support system using rough set theory and machine learning for disease prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1