{"title":"SARS-CoV-2变异体受体结合域突变集对RBD-ACE2复合物稳定性的影响","authors":"Mykyta Peka, Viktor Balatsky","doi":"10.2217/fvl-2022-0152","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> Bioinformatic analysis of mutation sets in receptor-binding domain (RBD) of currently and previously circulating SARS-CoV-2 variants of concern (VOCs) and interest (VOIs) to assess their ability to bind the ACE2 receptor. <b>Methods:</b> <i>In silico</i> sequence and structure-oriented approaches were used to evaluate the impact of single and multiple mutations. <b>Results:</b> Mutations detected in VOCs and VOIs led to the reduction of binding free energy of the RBD-ACE2 complex, forming additional chemical bonds with ACE2, and to an increase of RBD-ACE2 complex stability. <b>Conclusion:</b> Mutation sets characteristic of SARS-CoV-2 variants have complex effects on the ACE2 receptor-binding affinity associated with amino acid interactions at mutation sites, as well as on the acquisition of other viral adaptive advantages.</p>","PeriodicalId":12505,"journal":{"name":"Future Virology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/97/65/fvl-2022-0152.PMC10089296.pdf","citationCount":"2","resultStr":"{\"title\":\"The impact of mutation sets in receptor-binding domain of SARS-CoV-2 variants on the stability of RBD-ACE2 complex.\",\"authors\":\"Mykyta Peka, Viktor Balatsky\",\"doi\":\"10.2217/fvl-2022-0152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Aim:</b> Bioinformatic analysis of mutation sets in receptor-binding domain (RBD) of currently and previously circulating SARS-CoV-2 variants of concern (VOCs) and interest (VOIs) to assess their ability to bind the ACE2 receptor. <b>Methods:</b> <i>In silico</i> sequence and structure-oriented approaches were used to evaluate the impact of single and multiple mutations. <b>Results:</b> Mutations detected in VOCs and VOIs led to the reduction of binding free energy of the RBD-ACE2 complex, forming additional chemical bonds with ACE2, and to an increase of RBD-ACE2 complex stability. <b>Conclusion:</b> Mutation sets characteristic of SARS-CoV-2 variants have complex effects on the ACE2 receptor-binding affinity associated with amino acid interactions at mutation sites, as well as on the acquisition of other viral adaptive advantages.</p>\",\"PeriodicalId\":12505,\"journal\":{\"name\":\"Future Virology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/97/65/fvl-2022-0152.PMC10089296.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2217/fvl-2022-0152\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2217/fvl-2022-0152","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
The impact of mutation sets in receptor-binding domain of SARS-CoV-2 variants on the stability of RBD-ACE2 complex.
Aim: Bioinformatic analysis of mutation sets in receptor-binding domain (RBD) of currently and previously circulating SARS-CoV-2 variants of concern (VOCs) and interest (VOIs) to assess their ability to bind the ACE2 receptor. Methods:In silico sequence and structure-oriented approaches were used to evaluate the impact of single and multiple mutations. Results: Mutations detected in VOCs and VOIs led to the reduction of binding free energy of the RBD-ACE2 complex, forming additional chemical bonds with ACE2, and to an increase of RBD-ACE2 complex stability. Conclusion: Mutation sets characteristic of SARS-CoV-2 variants have complex effects on the ACE2 receptor-binding affinity associated with amino acid interactions at mutation sites, as well as on the acquisition of other viral adaptive advantages.
期刊介绍:
Future Virology is a peer-reviewed journal that delivers essential information in concise, at-a-glance article formats. Key advances in the field are reported and analyzed by international experts, providing an authoritative but accessible forum for this ever-expanding area of research. It is an interdisciplinary forum for all scientists working in the field today.