{"title":"基于活动性肺结核和肺部炎症患者的风险模型和深度学习网络构建。","authors":"Dechang Xu, Jiang Zeng, Fangfang Xie, Qianting Yang, Kaisong Huang, Wei Xiao, Houwen Zou, Huihua Zhang","doi":"10.3892/br.2023.1616","DOIUrl":null,"url":null,"abstract":"<p><p>Most patients with active pulmonary tuberculosis (TB) are difficult to be differentiated from pneumonia (PN), especially those with acid-fast bacillus smear-negative (AFB<sup>-</sup>) and interferon-γ release assay-positive (IGRA<sup>+</sup>) results. Thus, the aim of the present study was to develop a risk model of low-cost and rapid test for the diagnosis of AFB<sup>-</sup> IGRA<sup>+</sup> TB from PN. A total of 41 laboratory variables of 204 AFB<sup>-</sup> IGRA<sup>+</sup> TB and 156 PN participants were retrospectively analyzed. Candidate variables were identified by t-statistic test and univariate logistic model. The logistic regression analysis was used to construct the multivariate risk model and nomogram with internal and external validation. A total of 13 statistically differential variables were compared between AFB<sup>-</sup> IGRA<sup>+</sup> TB and PN by false discovery rate (FDR) and odds ratio (OR). By integrating five variables, including age, uric acid (UA), albumin (ALB), hemoglobin (Hb) and white blood cell counts (WBC), a multivariate risk model with a concordance index (C-index) of 0.7 (95% CI: 0.61, 0.8) was constructed. The nomogram showed that UA and Hb acted as protective factors with an OR <1, while age, WBC and ALB were risk factors for TB occurrence. Internal and external validation revealed that nomogram prediction was consistent with the actual observations. Collectively, it was revealed that an integration of five biomarkers (age, UA, ALB, Hb and WBC) may be used to quickly predict TB in AFB<sup>-</sup> IGRA<sup>+</sup> clinical samples from PN.</p>","PeriodicalId":8863,"journal":{"name":"Biomedical reports","volume":"18 5","pages":"34"},"PeriodicalIF":2.3000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/86/22/br-18-05-01616.PMC10079808.pdf","citationCount":"0","resultStr":"{\"title\":\"Construction of a risk model and deep learning network based on patients with active pulmonary tuberculosis and pulmonary inflammation.\",\"authors\":\"Dechang Xu, Jiang Zeng, Fangfang Xie, Qianting Yang, Kaisong Huang, Wei Xiao, Houwen Zou, Huihua Zhang\",\"doi\":\"10.3892/br.2023.1616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most patients with active pulmonary tuberculosis (TB) are difficult to be differentiated from pneumonia (PN), especially those with acid-fast bacillus smear-negative (AFB<sup>-</sup>) and interferon-γ release assay-positive (IGRA<sup>+</sup>) results. Thus, the aim of the present study was to develop a risk model of low-cost and rapid test for the diagnosis of AFB<sup>-</sup> IGRA<sup>+</sup> TB from PN. A total of 41 laboratory variables of 204 AFB<sup>-</sup> IGRA<sup>+</sup> TB and 156 PN participants were retrospectively analyzed. Candidate variables were identified by t-statistic test and univariate logistic model. The logistic regression analysis was used to construct the multivariate risk model and nomogram with internal and external validation. A total of 13 statistically differential variables were compared between AFB<sup>-</sup> IGRA<sup>+</sup> TB and PN by false discovery rate (FDR) and odds ratio (OR). By integrating five variables, including age, uric acid (UA), albumin (ALB), hemoglobin (Hb) and white blood cell counts (WBC), a multivariate risk model with a concordance index (C-index) of 0.7 (95% CI: 0.61, 0.8) was constructed. The nomogram showed that UA and Hb acted as protective factors with an OR <1, while age, WBC and ALB were risk factors for TB occurrence. Internal and external validation revealed that nomogram prediction was consistent with the actual observations. Collectively, it was revealed that an integration of five biomarkers (age, UA, ALB, Hb and WBC) may be used to quickly predict TB in AFB<sup>-</sup> IGRA<sup>+</sup> clinical samples from PN.</p>\",\"PeriodicalId\":8863,\"journal\":{\"name\":\"Biomedical reports\",\"volume\":\"18 5\",\"pages\":\"34\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/86/22/br-18-05-01616.PMC10079808.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3892/br.2023.1616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3892/br.2023.1616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Construction of a risk model and deep learning network based on patients with active pulmonary tuberculosis and pulmonary inflammation.
Most patients with active pulmonary tuberculosis (TB) are difficult to be differentiated from pneumonia (PN), especially those with acid-fast bacillus smear-negative (AFB-) and interferon-γ release assay-positive (IGRA+) results. Thus, the aim of the present study was to develop a risk model of low-cost and rapid test for the diagnosis of AFB- IGRA+ TB from PN. A total of 41 laboratory variables of 204 AFB- IGRA+ TB and 156 PN participants were retrospectively analyzed. Candidate variables were identified by t-statistic test and univariate logistic model. The logistic regression analysis was used to construct the multivariate risk model and nomogram with internal and external validation. A total of 13 statistically differential variables were compared between AFB- IGRA+ TB and PN by false discovery rate (FDR) and odds ratio (OR). By integrating five variables, including age, uric acid (UA), albumin (ALB), hemoglobin (Hb) and white blood cell counts (WBC), a multivariate risk model with a concordance index (C-index) of 0.7 (95% CI: 0.61, 0.8) was constructed. The nomogram showed that UA and Hb acted as protective factors with an OR <1, while age, WBC and ALB were risk factors for TB occurrence. Internal and external validation revealed that nomogram prediction was consistent with the actual observations. Collectively, it was revealed that an integration of five biomarkers (age, UA, ALB, Hb and WBC) may be used to quickly predict TB in AFB- IGRA+ clinical samples from PN.
期刊介绍:
Biomedical Reports is a monthly, peer-reviewed journal, dedicated to publishing research across all fields of biology and medicine, including pharmacology, pathology, gene therapy, genetics, microbiology, neurosciences, infectious diseases, molecular cardiology and molecular surgery. The journal provides a home for original research, case reports and review articles.