基于 5G-V2X 扩展模型的智能信道估计算法。

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Big Data Pub Date : 2024-04-01 Epub Date: 2023-02-27 DOI:10.1089/big.2022.0029
Jie Huang, Cheng Xu, Zhaohua Ji, Shan Xiao, Teng Liu, Nan Ma, Qinghui Zhou
{"title":"基于 5G-V2X 扩展模型的智能信道估计算法。","authors":"Jie Huang, Cheng Xu, Zhaohua Ji, Shan Xiao, Teng Liu, Nan Ma, Qinghui Zhou","doi":"10.1089/big.2022.0029","DOIUrl":null,"url":null,"abstract":"<p><p>Car networking systems based on 5G-V2X (vehicle-to-everything) have high requirements for reliability and low-latency communication to further improve communication performance. In the V2X scenario, this article establishes an extended model (basic expansion model) suitable for high-speed mobile scenarios based on the sparsity of the channel impulse response. And propose a channel estimation algorithm based on deep learning, the method designed a multilayer convolutional neural network to complete frequency domain interpolation. A two-way control cycle gating unit (bidirectional gated recurrent unit) is designed to predict the state in the time domain. And introduce speed parameters and multipath parameters to accurately train channel data under different moving speed environments. System simulation shows that the proposed algorithm can accurately train the number of channels. Compared with the traditional car networking channel estimation algorithm, the proposed algorithm improves the accuracy of channel estimation and effectively reduces the bit error rate.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":"127-140"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Intelligent Channel Estimation Algorithm Based on Extended Model for 5G-V2X.\",\"authors\":\"Jie Huang, Cheng Xu, Zhaohua Ji, Shan Xiao, Teng Liu, Nan Ma, Qinghui Zhou\",\"doi\":\"10.1089/big.2022.0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Car networking systems based on 5G-V2X (vehicle-to-everything) have high requirements for reliability and low-latency communication to further improve communication performance. In the V2X scenario, this article establishes an extended model (basic expansion model) suitable for high-speed mobile scenarios based on the sparsity of the channel impulse response. And propose a channel estimation algorithm based on deep learning, the method designed a multilayer convolutional neural network to complete frequency domain interpolation. A two-way control cycle gating unit (bidirectional gated recurrent unit) is designed to predict the state in the time domain. And introduce speed parameters and multipath parameters to accurately train channel data under different moving speed environments. System simulation shows that the proposed algorithm can accurately train the number of channels. Compared with the traditional car networking channel estimation algorithm, the proposed algorithm improves the accuracy of channel estimation and effectively reduces the bit error rate.</p>\",\"PeriodicalId\":51314,\"journal\":{\"name\":\"Big Data\",\"volume\":\" \",\"pages\":\"127-140\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1089/big.2022.0029\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2022.0029","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

基于 5G-V2X(车到万物)的车联网系统对可靠性和低延迟通信有很高的要求,以进一步提高通信性能。在V2X场景下,本文基于信道脉冲响应的稀疏性,建立了适用于高速移动场景的扩展模型(基本扩展模型)。并提出一种基于深度学习的信道估计算法,该方法设计了一个多层卷积神经网络来完成频域插值。设计了一个双向控制周期门控单元(双向门控递归单元)来预测时域中的状态。并引入速度参数和多径参数,精确训练不同移动速度环境下的信道数据。系统仿真表明,所提出的算法可以精确训练信道数。与传统车联网信道估计算法相比,提出的算法提高了信道估计的准确性,有效降低了误码率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Intelligent Channel Estimation Algorithm Based on Extended Model for 5G-V2X.

Car networking systems based on 5G-V2X (vehicle-to-everything) have high requirements for reliability and low-latency communication to further improve communication performance. In the V2X scenario, this article establishes an extended model (basic expansion model) suitable for high-speed mobile scenarios based on the sparsity of the channel impulse response. And propose a channel estimation algorithm based on deep learning, the method designed a multilayer convolutional neural network to complete frequency domain interpolation. A two-way control cycle gating unit (bidirectional gated recurrent unit) is designed to predict the state in the time domain. And introduce speed parameters and multipath parameters to accurately train channel data under different moving speed environments. System simulation shows that the proposed algorithm can accurately train the number of channels. Compared with the traditional car networking channel estimation algorithm, the proposed algorithm improves the accuracy of channel estimation and effectively reduces the bit error rate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Big Data
Big Data COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍: Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions. Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government. Big Data coverage includes: Big data industry standards, New technologies being developed specifically for big data, Data acquisition, cleaning, distribution, and best practices, Data protection, privacy, and policy, Business interests from research to product, The changing role of business intelligence, Visualization and design principles of big data infrastructures, Physical interfaces and robotics, Social networking advantages for Facebook, Twitter, Amazon, Google, etc, Opportunities around big data and how companies can harness it to their advantage.
期刊最新文献
DMHANT: DropMessage Hypergraph Attention Network for Information Propagation Prediction. Maximizing Influence in Social Networks Using Combined Local Features and Deep Learning-Based Node Embedding. A Weighted GraphSAGE-Based Context-Aware Approach for Big Data Access Control. Attribute-Based Adaptive Homomorphic Encryption for Big Data Security. Hybrid Deep Learning Approach for Traffic Speed Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1