转化生长因子- β - 1过表达人牙髓干细胞衍生分泌组通过典型smad信号通路对cd44介导的成纤维细胞激活的比较蛋白质组学分析。

IF 2.8 4区 医学 Q3 CELL BIOLOGY Connective Tissue Research Pub Date : 2023-03-01 DOI:10.1080/03008207.2022.2144733
H Salkin, M B Acar, Z B Gonen, K E Basaran, S Ozcan
{"title":"转化生长因子- β - 1过表达人牙髓干细胞衍生分泌组通过典型smad信号通路对cd44介导的成纤维细胞激活的比较蛋白质组学分析。","authors":"H Salkin,&nbsp;M B Acar,&nbsp;Z B Gonen,&nbsp;K E Basaran,&nbsp;S Ozcan","doi":"10.1080/03008207.2022.2144733","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The aim of this study investigates whether the secretome collected from human dental pulp stem cells (hDPSCs) transfected with transforming growth factor-beta1 (TGF-β1) is related to CD44 expression of fibroblasts and canonical smad signaling pathway via proteomic analyzes.</p><p><strong>Materials and methods: </strong>In order to obtain secretome, hDPSCs were conditioned with serum-free alpha-MEM in an incubator containing 37°C, 5% CO<sub>2</sub>, and humidity for 18-24 h. Proteins in control and TGF-β1 secretome were analyzed by tandem mass spectrometry-based shotgun proteomic method. Bioinformatic evaluations were completed via Ingenuity Pathway Analysis (IPA, QIAGEN) software. CD44 expressions in fibroblasts were evaluated by real time-PCR, western blot, and immunofluorescent staining. The relationship of canonical smad pathway and CD44 was analyzed by western blot and LC-MS/MS. Cell cycle, proliferation and wound healing tests were performed in the secretome groups.</p><p><strong>Results: </strong>Venn diagram was showed 174 common proteins were identified from each group. In the control secretome 140 unique proteins were identified and 66 entries were exclusive for TGF-β1 secretome. CD44 gene and protein expressions were increased in fibroblasts treated with TGF-β1 secretome. Relationship between targeted protein data showed that activation of the canonical TGF-β1/Smad pathway was up-regulated CD44 expression in fibroblasts. The canonical smad pathway-mediated upregulation of CD44 may increase the mitotic activity, proliferation, and wound healing potential in fibroblasts.</p><p><strong>Conclusion: </strong>While TGF-β1-transfected hDPSC secretome may be a potential therapeutic candidate in regenerative connective tissue therapies as it induces fibroblast activation, anti-TGF-β1-based therapies would be considered in histopathological conditions such as pulmonary fibrosis or hepatic fibrosis.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative proteomics analysis of transforming growth factor-beta1-overexpressed human dental pulp stem cell-derived secretome on CD44-mediated fibroblast activation via canonical smad signal pathway.\",\"authors\":\"H Salkin,&nbsp;M B Acar,&nbsp;Z B Gonen,&nbsp;K E Basaran,&nbsp;S Ozcan\",\"doi\":\"10.1080/03008207.2022.2144733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The aim of this study investigates whether the secretome collected from human dental pulp stem cells (hDPSCs) transfected with transforming growth factor-beta1 (TGF-β1) is related to CD44 expression of fibroblasts and canonical smad signaling pathway via proteomic analyzes.</p><p><strong>Materials and methods: </strong>In order to obtain secretome, hDPSCs were conditioned with serum-free alpha-MEM in an incubator containing 37°C, 5% CO<sub>2</sub>, and humidity for 18-24 h. Proteins in control and TGF-β1 secretome were analyzed by tandem mass spectrometry-based shotgun proteomic method. Bioinformatic evaluations were completed via Ingenuity Pathway Analysis (IPA, QIAGEN) software. CD44 expressions in fibroblasts were evaluated by real time-PCR, western blot, and immunofluorescent staining. The relationship of canonical smad pathway and CD44 was analyzed by western blot and LC-MS/MS. Cell cycle, proliferation and wound healing tests were performed in the secretome groups.</p><p><strong>Results: </strong>Venn diagram was showed 174 common proteins were identified from each group. In the control secretome 140 unique proteins were identified and 66 entries were exclusive for TGF-β1 secretome. CD44 gene and protein expressions were increased in fibroblasts treated with TGF-β1 secretome. Relationship between targeted protein data showed that activation of the canonical TGF-β1/Smad pathway was up-regulated CD44 expression in fibroblasts. The canonical smad pathway-mediated upregulation of CD44 may increase the mitotic activity, proliferation, and wound healing potential in fibroblasts.</p><p><strong>Conclusion: </strong>While TGF-β1-transfected hDPSC secretome may be a potential therapeutic candidate in regenerative connective tissue therapies as it induces fibroblast activation, anti-TGF-β1-based therapies would be considered in histopathological conditions such as pulmonary fibrosis or hepatic fibrosis.</p>\",\"PeriodicalId\":10661,\"journal\":{\"name\":\"Connective Tissue Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Connective Tissue Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/03008207.2022.2144733\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connective Tissue Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2022.2144733","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:通过蛋白质组学分析,探讨转化生长因子-β1 (TGF-β1)转染人牙髓干细胞(hDPSCs)分泌组是否与成纤维细胞CD44表达及典型smad信号通路相关。材料和方法:为获得分泌组,将hdpsc在37°C、5% CO2和湿度的培养箱中用无血清α - mem培养18-24 h。对照蛋白和TGF-β1分泌组蛋白采用基于串联质谱的鸟枪蛋白组学方法进行分析。生物信息学评价通过Ingenuity Pathway Analysis (IPA, QIAGEN)软件完成。采用real - time-PCR、western blot和免疫荧光染色检测成纤维细胞中CD44的表达。采用western blot和LC-MS/MS分析典型smad通路与CD44的关系。各组分别进行细胞周期、增殖和创面愈合试验。结果:维恩图显示,每组共鉴定出174个共同蛋白。在对照分泌组中,鉴定出140个独特的蛋白,TGF-β1分泌组专有的蛋白有66个。TGF-β1分泌组处理后成纤维细胞CD44基因及蛋白表达升高。靶蛋白之间的关系数据显示,激活典型的TGF-β1/Smad通路可上调成纤维细胞中CD44的表达。典型smad通路介导的CD44上调可能增加成纤维细胞的有丝分裂活性、增殖和伤口愈合潜力。结论:虽然TGF-β1转染的hDPSC分泌组可能是再生结缔组织治疗的潜在治疗候选者,因为它可以诱导成纤维细胞活化,但在肺纤维化或肝纤维化等组织病理条件下,可以考虑基于抗TGF-β1的治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative proteomics analysis of transforming growth factor-beta1-overexpressed human dental pulp stem cell-derived secretome on CD44-mediated fibroblast activation via canonical smad signal pathway.

Purpose: The aim of this study investigates whether the secretome collected from human dental pulp stem cells (hDPSCs) transfected with transforming growth factor-beta1 (TGF-β1) is related to CD44 expression of fibroblasts and canonical smad signaling pathway via proteomic analyzes.

Materials and methods: In order to obtain secretome, hDPSCs were conditioned with serum-free alpha-MEM in an incubator containing 37°C, 5% CO2, and humidity for 18-24 h. Proteins in control and TGF-β1 secretome were analyzed by tandem mass spectrometry-based shotgun proteomic method. Bioinformatic evaluations were completed via Ingenuity Pathway Analysis (IPA, QIAGEN) software. CD44 expressions in fibroblasts were evaluated by real time-PCR, western blot, and immunofluorescent staining. The relationship of canonical smad pathway and CD44 was analyzed by western blot and LC-MS/MS. Cell cycle, proliferation and wound healing tests were performed in the secretome groups.

Results: Venn diagram was showed 174 common proteins were identified from each group. In the control secretome 140 unique proteins were identified and 66 entries were exclusive for TGF-β1 secretome. CD44 gene and protein expressions were increased in fibroblasts treated with TGF-β1 secretome. Relationship between targeted protein data showed that activation of the canonical TGF-β1/Smad pathway was up-regulated CD44 expression in fibroblasts. The canonical smad pathway-mediated upregulation of CD44 may increase the mitotic activity, proliferation, and wound healing potential in fibroblasts.

Conclusion: While TGF-β1-transfected hDPSC secretome may be a potential therapeutic candidate in regenerative connective tissue therapies as it induces fibroblast activation, anti-TGF-β1-based therapies would be considered in histopathological conditions such as pulmonary fibrosis or hepatic fibrosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Connective Tissue Research
Connective Tissue Research 生物-细胞生物学
CiteScore
6.60
自引率
3.40%
发文量
37
审稿时长
2 months
期刊介绍: The aim of Connective Tissue Research is to present original and significant research in all basic areas of connective tissue and matrix biology. The journal also provides topical reviews and, on occasion, the proceedings of conferences in areas of special interest at which original work is presented. The journal supports an interdisciplinary approach; we present a variety of perspectives from different disciplines, including Biochemistry Cell and Molecular Biology Immunology Structural Biology Biophysics Biomechanics Regenerative Medicine The interests of the Editorial Board are to understand, mechanistically, the structure-function relationships in connective tissue extracellular matrix, and its associated cells, through interpretation of sophisticated experimentation using state-of-the-art technologies that include molecular genetics, imaging, immunology, biomechanics and tissue engineering.
期刊最新文献
Insight into the role of integrins and integrins-targeting biomaterials in bone regeneration. Gait assessment in a female rat Sprague Dawley model of disc-associated low back pain. Exploring the applications of platelet-rich plasma in tissue engineering and regenerative medicine: evidence from goat and sheep experimental research. Ubiquitin C-terminal hydrolase L1 activation in periodontal ligament cells mediates orthodontic tooth movement via the MAPK signaling pathway. Preliminary study of extracorporeal shock wave alleviating joint capsule fibrosis caused by internal bleeding of knee joint in rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1