利用分子模拟了解皮肤屏障

IF 14 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Progress in lipid research Pub Date : 2022-11-01 DOI:10.1016/j.plipres.2022.101184
Parashara Shamaprasad , Chloe O. Frame , Timothy C. Moore , Alexander Yang , Christopher R. Iacovella , Joke A. Bouwstra , Annette L. Bunge , Clare McCabe
{"title":"利用分子模拟了解皮肤屏障","authors":"Parashara Shamaprasad ,&nbsp;Chloe O. Frame ,&nbsp;Timothy C. Moore ,&nbsp;Alexander Yang ,&nbsp;Christopher R. Iacovella ,&nbsp;Joke A. Bouwstra ,&nbsp;Annette L. Bunge ,&nbsp;Clare McCabe","doi":"10.1016/j.plipres.2022.101184","DOIUrl":null,"url":null,"abstract":"<div><p>Skin's effectiveness as a barrier to permeation of water and other chemicals rests almost entirely in the outermost layer of the epidermis, the stratum corneum (SC), which consists of layers of corneocytes surrounded by highly organized lipid lamellae. As the only continuous path through the SC, transdermal permeation necessarily involves diffusion through these lipid layers. The role of the SC as a protective barrier is supported by its exceptional lipid composition consisting of ceramides (CERs), cholesterol (CHOL), and free fatty acids (FFAs) and the complete absence of phospholipids, which are present in most biological membranes. Molecular simulation, which provides molecular level detail of lipid configurations that can be connected with barrier function, has become a popular tool for studying SC lipid systems. We review this ever-increasing body of literature with the goals of (1) enabling the experimental skin community to understand, interpret and use the information generated from the simulations, (2) providing simulation experts with a solid background in the chemistry of SC lipids including the composition, structure and organization, and barrier function, and (3) presenting a state of the art picture of the field of SC lipid simulations, highlighting the difficulties and best practices for studying these systems, to encourage the generation of robust reproducible studies in the future. This review describes molecular simulation methodology and then critically examines results derived from simulations using atomistic and then coarse-grained models.</p></div>","PeriodicalId":20650,"journal":{"name":"Progress in lipid research","volume":"88 ","pages":"Article 101184"},"PeriodicalIF":14.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116345/pdf/","citationCount":"10","resultStr":"{\"title\":\"Using molecular simulation to understand the skin barrier\",\"authors\":\"Parashara Shamaprasad ,&nbsp;Chloe O. Frame ,&nbsp;Timothy C. Moore ,&nbsp;Alexander Yang ,&nbsp;Christopher R. Iacovella ,&nbsp;Joke A. Bouwstra ,&nbsp;Annette L. Bunge ,&nbsp;Clare McCabe\",\"doi\":\"10.1016/j.plipres.2022.101184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Skin's effectiveness as a barrier to permeation of water and other chemicals rests almost entirely in the outermost layer of the epidermis, the stratum corneum (SC), which consists of layers of corneocytes surrounded by highly organized lipid lamellae. As the only continuous path through the SC, transdermal permeation necessarily involves diffusion through these lipid layers. The role of the SC as a protective barrier is supported by its exceptional lipid composition consisting of ceramides (CERs), cholesterol (CHOL), and free fatty acids (FFAs) and the complete absence of phospholipids, which are present in most biological membranes. Molecular simulation, which provides molecular level detail of lipid configurations that can be connected with barrier function, has become a popular tool for studying SC lipid systems. We review this ever-increasing body of literature with the goals of (1) enabling the experimental skin community to understand, interpret and use the information generated from the simulations, (2) providing simulation experts with a solid background in the chemistry of SC lipids including the composition, structure and organization, and barrier function, and (3) presenting a state of the art picture of the field of SC lipid simulations, highlighting the difficulties and best practices for studying these systems, to encourage the generation of robust reproducible studies in the future. This review describes molecular simulation methodology and then critically examines results derived from simulations using atomistic and then coarse-grained models.</p></div>\",\"PeriodicalId\":20650,\"journal\":{\"name\":\"Progress in lipid research\",\"volume\":\"88 \",\"pages\":\"Article 101184\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116345/pdf/\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in lipid research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016378272200039X\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in lipid research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016378272200039X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 10

摘要

皮肤作为水和其他化学物质渗透屏障的有效性几乎完全取决于表皮的最外层,即角质层(SC),角质层由角质细胞层组成,周围是高度组织的脂质薄片。作为通过SC的唯一连续途径,透皮渗透必然涉及通过这些脂质层的扩散。SC作为保护屏障的作用是由其特殊的脂质组成支持的,包括神经酰胺(CERs)、胆固醇(CHOL)和游离脂肪酸(FFAs),以及存在于大多数生物膜中的磷脂的完全缺失。分子模拟提供了与屏障功能相关的脂质结构的分子水平细节,已成为研究SC脂质系统的流行工具。我们回顾这些不断增加的文献,目的是:(1)使实验皮肤社区能够理解、解释和使用从模拟中产生的信息,(2)为模拟专家提供SC脂质化学的坚实背景,包括组成、结构和组织以及屏障功能,以及(3)展示SC脂质模拟领域的最新技术。强调研究这些系统的困难和最佳实践,以鼓励在未来进行可靠的可重复研究。这篇综述描述了分子模拟方法,然后严格检查从原子模型和粗粒度模型的模拟中得出的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using molecular simulation to understand the skin barrier

Skin's effectiveness as a barrier to permeation of water and other chemicals rests almost entirely in the outermost layer of the epidermis, the stratum corneum (SC), which consists of layers of corneocytes surrounded by highly organized lipid lamellae. As the only continuous path through the SC, transdermal permeation necessarily involves diffusion through these lipid layers. The role of the SC as a protective barrier is supported by its exceptional lipid composition consisting of ceramides (CERs), cholesterol (CHOL), and free fatty acids (FFAs) and the complete absence of phospholipids, which are present in most biological membranes. Molecular simulation, which provides molecular level detail of lipid configurations that can be connected with barrier function, has become a popular tool for studying SC lipid systems. We review this ever-increasing body of literature with the goals of (1) enabling the experimental skin community to understand, interpret and use the information generated from the simulations, (2) providing simulation experts with a solid background in the chemistry of SC lipids including the composition, structure and organization, and barrier function, and (3) presenting a state of the art picture of the field of SC lipid simulations, highlighting the difficulties and best practices for studying these systems, to encourage the generation of robust reproducible studies in the future. This review describes molecular simulation methodology and then critically examines results derived from simulations using atomistic and then coarse-grained models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in lipid research
Progress in lipid research 生物-生化与分子生物学
CiteScore
24.50
自引率
2.20%
发文量
37
审稿时长
14.6 weeks
期刊介绍: The significance of lipids as a fundamental category of biological compounds has been widely acknowledged. The utilization of our understanding in the fields of biochemistry, chemistry, and physiology of lipids has continued to grow in biotechnology, the fats and oils industry, and medicine. Moreover, new aspects such as lipid biophysics, particularly related to membranes and lipoproteins, as well as basic research and applications of liposomes, have emerged. To keep up with these advancements, there is a need for a journal that can evaluate recent progress in specific areas and provide a historical perspective on current research. Progress in Lipid Research serves this purpose.
期刊最新文献
How active cholesterol coordinates cell cholesterol homeostasis: Test of a hypothesis Lipid sensing by PPARα: Role in controlling hepatocyte gene regulatory networks and the metabolic response to fasting Increasing oil content in Brassica oilseed species Long chain polyunsaturated fatty acid (LC-PUFA) composition of fish sperm: nexus of dietary, evolutionary, and biomechanical drivers Targeting bacterial phospholipids and their synthesis pathways for antibiotic discovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1