{"title":"柔性电子皮肤在机器人操作过程中的抓取状态监测。","authors":"Lusheng Bao, Cheng Han, Guolin Li, Jun Chen, Wenqiang Wang, Hao Yang, Xin Huang, Jiajie Guo, Hao Wu","doi":"10.1089/soro.2022.0014","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic skin for robotic tactile sensing has been studied extensively over the past years, yet practical applications of electronic skin for the grasping state monitoring during robotic manipulation are still limited. In this study, we present the fabrication and implementation of electronic skin sensor arrays for the detection of unstable grasping. The piezoresistive sensor arrays have the advantages of facile fabrication, fast response, and high reliability. With the tactile data from the sensor array, we propose two quantitative indicators, correlation coefficient and wavelet coefficient, to identify grasping with variable forces and slippage. Those two indicators reflect both time and frequency domain characteristics in the contact forces from the sensor array and can be obtained without large amount of calculation. We demonstrate the utility of this method under various conditions, the results indicate grasping with variable forces, and slippage can be distinguished by this method. The flexible sensor arrays are adopted for tactile sensing on a bionic hand, and the effectiveness of this method in detecting various grasping states has been verified. The electronic skin sensor array and the grasping state monitoring method are promising for applications in robotic dexterous manipulation.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":"10 2","pages":"336-344"},"PeriodicalIF":6.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Flexible Electronic Skin for Monitoring of Grasping State During Robotic Manipulation.\",\"authors\":\"Lusheng Bao, Cheng Han, Guolin Li, Jun Chen, Wenqiang Wang, Hao Yang, Xin Huang, Jiajie Guo, Hao Wu\",\"doi\":\"10.1089/soro.2022.0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electronic skin for robotic tactile sensing has been studied extensively over the past years, yet practical applications of electronic skin for the grasping state monitoring during robotic manipulation are still limited. In this study, we present the fabrication and implementation of electronic skin sensor arrays for the detection of unstable grasping. The piezoresistive sensor arrays have the advantages of facile fabrication, fast response, and high reliability. With the tactile data from the sensor array, we propose two quantitative indicators, correlation coefficient and wavelet coefficient, to identify grasping with variable forces and slippage. Those two indicators reflect both time and frequency domain characteristics in the contact forces from the sensor array and can be obtained without large amount of calculation. We demonstrate the utility of this method under various conditions, the results indicate grasping with variable forces, and slippage can be distinguished by this method. The flexible sensor arrays are adopted for tactile sensing on a bionic hand, and the effectiveness of this method in detecting various grasping states has been verified. The electronic skin sensor array and the grasping state monitoring method are promising for applications in robotic dexterous manipulation.</p>\",\"PeriodicalId\":48685,\"journal\":{\"name\":\"Soft Robotics\",\"volume\":\"10 2\",\"pages\":\"336-344\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2022.0014\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2022.0014","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
Flexible Electronic Skin for Monitoring of Grasping State During Robotic Manipulation.
Electronic skin for robotic tactile sensing has been studied extensively over the past years, yet practical applications of electronic skin for the grasping state monitoring during robotic manipulation are still limited. In this study, we present the fabrication and implementation of electronic skin sensor arrays for the detection of unstable grasping. The piezoresistive sensor arrays have the advantages of facile fabrication, fast response, and high reliability. With the tactile data from the sensor array, we propose two quantitative indicators, correlation coefficient and wavelet coefficient, to identify grasping with variable forces and slippage. Those two indicators reflect both time and frequency domain characteristics in the contact forces from the sensor array and can be obtained without large amount of calculation. We demonstrate the utility of this method under various conditions, the results indicate grasping with variable forces, and slippage can be distinguished by this method. The flexible sensor arrays are adopted for tactile sensing on a bionic hand, and the effectiveness of this method in detecting various grasping states has been verified. The electronic skin sensor array and the grasping state monitoring method are promising for applications in robotic dexterous manipulation.
期刊介绍:
Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made.
With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.