{"title":"微生物系统中新陈代谢的空间自组织:酶和化学物质的问题。","authors":"Alma Dal Co, Martin Ackermann, Simon van Vliet","doi":"10.1016/j.cels.2022.12.009","DOIUrl":null,"url":null,"abstract":"<p><p>Most bacteria live in dense, spatially structured communities such as biofilms. The high density allows cells to alter the local microenvironment, whereas the limited mobility can cause species to become spatially organized. Together, these factors can spatially organize metabolic processes within microbial communities so that cells in different locations perform different metabolic reactions. The overall metabolic activity of a community depends both on how metabolic reactions are arranged in space and on how they are coupled, i.e., how cells in different regions exchange metabolites. Here, we review mechanisms that lead to the spatial organization of metabolic processes in microbial systems. We discuss factors that determine the length scales over which metabolic activities are arranged in space and highlight how the spatial organization of metabolic processes affects the ecology and evolution of microbial communities. Finally, we define key open questions that we believe should be the main focus of future research.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"14 2","pages":"98-108"},"PeriodicalIF":9.0000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spatial self-organization of metabolism in microbial systems: A matter of enzymes and chemicals.\",\"authors\":\"Alma Dal Co, Martin Ackermann, Simon van Vliet\",\"doi\":\"10.1016/j.cels.2022.12.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most bacteria live in dense, spatially structured communities such as biofilms. The high density allows cells to alter the local microenvironment, whereas the limited mobility can cause species to become spatially organized. Together, these factors can spatially organize metabolic processes within microbial communities so that cells in different locations perform different metabolic reactions. The overall metabolic activity of a community depends both on how metabolic reactions are arranged in space and on how they are coupled, i.e., how cells in different regions exchange metabolites. Here, we review mechanisms that lead to the spatial organization of metabolic processes in microbial systems. We discuss factors that determine the length scales over which metabolic activities are arranged in space and highlight how the spatial organization of metabolic processes affects the ecology and evolution of microbial communities. Finally, we define key open questions that we believe should be the main focus of future research.</p>\",\"PeriodicalId\":54348,\"journal\":{\"name\":\"Cell Systems\",\"volume\":\"14 2\",\"pages\":\"98-108\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2023-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2022.12.009\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cels.2022.12.009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Spatial self-organization of metabolism in microbial systems: A matter of enzymes and chemicals.
Most bacteria live in dense, spatially structured communities such as biofilms. The high density allows cells to alter the local microenvironment, whereas the limited mobility can cause species to become spatially organized. Together, these factors can spatially organize metabolic processes within microbial communities so that cells in different locations perform different metabolic reactions. The overall metabolic activity of a community depends both on how metabolic reactions are arranged in space and on how they are coupled, i.e., how cells in different regions exchange metabolites. Here, we review mechanisms that lead to the spatial organization of metabolic processes in microbial systems. We discuss factors that determine the length scales over which metabolic activities are arranged in space and highlight how the spatial organization of metabolic processes affects the ecology and evolution of microbial communities. Finally, we define key open questions that we believe should be the main focus of future research.
Cell SystemsMedicine-Pathology and Forensic Medicine
CiteScore
16.50
自引率
1.10%
发文量
84
审稿时长
42 days
期刊介绍:
In 2015, Cell Systems was founded as a platform within Cell Press to showcase innovative research in systems biology. Our primary goal is to investigate complex biological phenomena that cannot be simply explained by basic mathematical principles. While the physical sciences have long successfully tackled such challenges, we have discovered that our most impactful publications often employ quantitative, inference-based methodologies borrowed from the fields of physics, engineering, mathematics, and computer science. We are committed to providing a home for elegant research that addresses fundamental questions in systems biology.