组织工程半月板植入物的发展策略综述

Q3 Biochemistry, Genetics and Molecular Biology Biomaterials and biosystems Pub Date : 2021-12-01 DOI:10.1016/j.bbiosy.2021.100026
George J. Klarmann , Joel Gaston , Vincent B. Ho
{"title":"组织工程半月板植入物的发展策略综述","authors":"George J. Klarmann ,&nbsp;Joel Gaston ,&nbsp;Vincent B. Ho","doi":"10.1016/j.bbiosy.2021.100026","DOIUrl":null,"url":null,"abstract":"<div><p>The meniscus is a key stabilizing tissue of the knee that facilitates proper tracking and movement of the knee joint and absorbs stresses related to physical activity. This review article describes the biology, structure, and functions of the human knee meniscus, common tears and repair approaches, and current research and development approaches using modern methods to fabricate a scaffold or tissue engineered meniscal replacement. Meniscal tears are quite common, often resulting from sports or physical training, though injury can result without specific contact during normal physical activity such as bending or squatting. Meniscal injuries often require surgical intervention to repair, restore basic functionality and relieve pain, and severe damage may warrant reconstruction using allograft transplants or commercial implant devices. Ongoing research is attempting to develop alternative scaffold and tissue engineered devices using modern fabrication techniques including three-dimensional (3D) printing which can fabricate a patient-specific meniscus replacement. An ideal meniscal substitute should have mechanical properties that are close to that of natural human meniscus, and also be easily adapted for surgical procedures and fixation. A better understanding of the organization and structure of the meniscus as well as its potential points of failure will lead to improved design approaches to generate a suitable and functional replacement.</p></div>","PeriodicalId":72379,"journal":{"name":"Biomaterials and biosystems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bbiosy.2021.100026","citationCount":"9","resultStr":"{\"title\":\"A review of strategies for development of tissue engineered meniscal implants\",\"authors\":\"George J. Klarmann ,&nbsp;Joel Gaston ,&nbsp;Vincent B. Ho\",\"doi\":\"10.1016/j.bbiosy.2021.100026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The meniscus is a key stabilizing tissue of the knee that facilitates proper tracking and movement of the knee joint and absorbs stresses related to physical activity. This review article describes the biology, structure, and functions of the human knee meniscus, common tears and repair approaches, and current research and development approaches using modern methods to fabricate a scaffold or tissue engineered meniscal replacement. Meniscal tears are quite common, often resulting from sports or physical training, though injury can result without specific contact during normal physical activity such as bending or squatting. Meniscal injuries often require surgical intervention to repair, restore basic functionality and relieve pain, and severe damage may warrant reconstruction using allograft transplants or commercial implant devices. Ongoing research is attempting to develop alternative scaffold and tissue engineered devices using modern fabrication techniques including three-dimensional (3D) printing which can fabricate a patient-specific meniscus replacement. An ideal meniscal substitute should have mechanical properties that are close to that of natural human meniscus, and also be easily adapted for surgical procedures and fixation. A better understanding of the organization and structure of the meniscus as well as its potential points of failure will lead to improved design approaches to generate a suitable and functional replacement.</p></div>\",\"PeriodicalId\":72379,\"journal\":{\"name\":\"Biomaterials and biosystems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.bbiosy.2021.100026\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials and biosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666534421000192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials and biosystems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666534421000192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 9

摘要

半月板是膝关节的关键稳定组织,有助于膝关节的正确跟踪和运动,并吸收与体育活动有关的压力。本文综述了人类膝关节半月板的生物学、结构和功能,常见的撕裂和修复方法,以及目前使用现代方法制造支架或组织工程半月板替代物的研究和开发方法。半月板撕裂很常见,通常是由运动或体育训练引起的,尽管在弯腰或下蹲等正常体育活动中,没有特定的接触也会造成损伤。半月板损伤通常需要手术干预来修复,恢复基本功能和减轻疼痛,严重的损伤可能需要使用同种异体移植或商业植入装置进行重建。正在进行的研究正在尝试开发替代支架和组织工程设备,使用现代制造技术,包括三维(3D)打印,可以制造患者特定的半月板替代物。理想的半月板替代物应具有接近自然人类半月板的力学特性,并且易于适应外科手术和固定。更好地了解半月板的组织和结构以及其潜在的故障点将导致改进的设计方法,以产生合适的和功能性的替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review of strategies for development of tissue engineered meniscal implants

The meniscus is a key stabilizing tissue of the knee that facilitates proper tracking and movement of the knee joint and absorbs stresses related to physical activity. This review article describes the biology, structure, and functions of the human knee meniscus, common tears and repair approaches, and current research and development approaches using modern methods to fabricate a scaffold or tissue engineered meniscal replacement. Meniscal tears are quite common, often resulting from sports or physical training, though injury can result without specific contact during normal physical activity such as bending or squatting. Meniscal injuries often require surgical intervention to repair, restore basic functionality and relieve pain, and severe damage may warrant reconstruction using allograft transplants or commercial implant devices. Ongoing research is attempting to develop alternative scaffold and tissue engineered devices using modern fabrication techniques including three-dimensional (3D) printing which can fabricate a patient-specific meniscus replacement. An ideal meniscal substitute should have mechanical properties that are close to that of natural human meniscus, and also be easily adapted for surgical procedures and fixation. A better understanding of the organization and structure of the meniscus as well as its potential points of failure will lead to improved design approaches to generate a suitable and functional replacement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
审稿时长
25 days
期刊最新文献
Biomaterials functionalized with magnetic nanoparticles for tissue engineering: Between advantages and challenges A phosphate glass reinforced composite acrylamide gradient scaffold for osteochondral interface regeneration Does the extent of bone defects affect the time to reach full weight-bearing after treatment with the Masquelet technique? The role of extracellular matrix in angiogenesis: Beyond adhesion and structure Bifunctional mesoporous glasses for bone tissue engineering: Biological effects of doping with cerium and polyphenols in 2D and 3D in vitro models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1