Kevin Teh, Paul Armitage, Solomon Tesfaye, Dinesh Selvarajah
{"title":"糖尿病疼痛性神经病变治疗反应的深度学习分类:机器学习与磁共振神经成像的联合方法学研究。","authors":"Kevin Teh, Paul Armitage, Solomon Tesfaye, Dinesh Selvarajah","doi":"10.1007/s12021-022-09603-5","DOIUrl":null,"url":null,"abstract":"<p><p>Functional magnetic resonance imaging (fMRI) has been shown successfully to assess and stratify patients with painful diabetic peripheral neuropathy (pDPN). This supports the idea of using neuroimaging as a mechanism-based technique to individualise therapy for patients with painful DPN. The aim of this study was to use deep learning to predict treatment response in patients with pDPN using resting state functional imaging (rs-fMRI). We divided 43 painful pDPN patients into responders and non-responders to lidocaine treatment (responders n = 29 and non-responders n = 14). We used rs-fMRI to extract functional connectivity features, using group independent component analysis (gICA), and performed automated treatment response deep learning classification with three-dimensional convolutional neural networks (3D-CNN). Using gICA we achieved an area under the receiver operating characteristic curve (AUC) of 96.60% and F1-Score of 95% in a ten-fold cross validation (CV) experiment using our described 3D-CNN algorithm. To our knowledge, this is the first study utilising deep learning methods to classify treatment response in pDPN.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"21 1","pages":"35-43"},"PeriodicalIF":2.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931783/pdf/","citationCount":"2","resultStr":"{\"title\":\"Deep Learning Classification of Treatment Response in Diabetic Painful Neuropathy: A Combined Machine Learning and Magnetic Resonance Neuroimaging Methodological Study.\",\"authors\":\"Kevin Teh, Paul Armitage, Solomon Tesfaye, Dinesh Selvarajah\",\"doi\":\"10.1007/s12021-022-09603-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Functional magnetic resonance imaging (fMRI) has been shown successfully to assess and stratify patients with painful diabetic peripheral neuropathy (pDPN). This supports the idea of using neuroimaging as a mechanism-based technique to individualise therapy for patients with painful DPN. The aim of this study was to use deep learning to predict treatment response in patients with pDPN using resting state functional imaging (rs-fMRI). We divided 43 painful pDPN patients into responders and non-responders to lidocaine treatment (responders n = 29 and non-responders n = 14). We used rs-fMRI to extract functional connectivity features, using group independent component analysis (gICA), and performed automated treatment response deep learning classification with three-dimensional convolutional neural networks (3D-CNN). Using gICA we achieved an area under the receiver operating characteristic curve (AUC) of 96.60% and F1-Score of 95% in a ten-fold cross validation (CV) experiment using our described 3D-CNN algorithm. To our knowledge, this is the first study utilising deep learning methods to classify treatment response in pDPN.</p>\",\"PeriodicalId\":49761,\"journal\":{\"name\":\"Neuroinformatics\",\"volume\":\"21 1\",\"pages\":\"35-43\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931783/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroinformatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12021-022-09603-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-022-09603-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Deep Learning Classification of Treatment Response in Diabetic Painful Neuropathy: A Combined Machine Learning and Magnetic Resonance Neuroimaging Methodological Study.
Functional magnetic resonance imaging (fMRI) has been shown successfully to assess and stratify patients with painful diabetic peripheral neuropathy (pDPN). This supports the idea of using neuroimaging as a mechanism-based technique to individualise therapy for patients with painful DPN. The aim of this study was to use deep learning to predict treatment response in patients with pDPN using resting state functional imaging (rs-fMRI). We divided 43 painful pDPN patients into responders and non-responders to lidocaine treatment (responders n = 29 and non-responders n = 14). We used rs-fMRI to extract functional connectivity features, using group independent component analysis (gICA), and performed automated treatment response deep learning classification with three-dimensional convolutional neural networks (3D-CNN). Using gICA we achieved an area under the receiver operating characteristic curve (AUC) of 96.60% and F1-Score of 95% in a ten-fold cross validation (CV) experiment using our described 3D-CNN algorithm. To our knowledge, this is the first study utilising deep learning methods to classify treatment response in pDPN.
期刊介绍:
Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.