Anika Liu , Srijit Seal , Hongbin Yang , Andreas Bender
{"title":"利用化学和生物数据预测药物毒性","authors":"Anika Liu , Srijit Seal , Hongbin Yang , Andreas Bender","doi":"10.1016/j.slasd.2022.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>Various sources of information can be used to better understand and predict compound activity and safety-related endpoints, including biological data such as gene expression and cell morphology. In this review, we first introduce types of chemical, <em>in vitro</em> and <em>in vivo</em> information that can be used to describe compounds and adverse effects. We then explore how compound descriptors based on chemical structure or biological perturbation response can be used to predict safety-related endpoints, and how especially biological data can help us to better understand adverse effects mechanistically. Overall, the described applications demonstrate how large-scale biological information presents new opportunities to anticipate and understand the biological effects of compounds, and how this can support predictive toxicology and drug discovery projects.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Using chemical and biological data to predict drug toxicity\",\"authors\":\"Anika Liu , Srijit Seal , Hongbin Yang , Andreas Bender\",\"doi\":\"10.1016/j.slasd.2022.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Various sources of information can be used to better understand and predict compound activity and safety-related endpoints, including biological data such as gene expression and cell morphology. In this review, we first introduce types of chemical, <em>in vitro</em> and <em>in vivo</em> information that can be used to describe compounds and adverse effects. We then explore how compound descriptors based on chemical structure or biological perturbation response can be used to predict safety-related endpoints, and how especially biological data can help us to better understand adverse effects mechanistically. Overall, the described applications demonstrate how large-scale biological information presents new opportunities to anticipate and understand the biological effects of compounds, and how this can support predictive toxicology and drug discovery projects.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2472555222137147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555222137147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Using chemical and biological data to predict drug toxicity
Various sources of information can be used to better understand and predict compound activity and safety-related endpoints, including biological data such as gene expression and cell morphology. In this review, we first introduce types of chemical, in vitro and in vivo information that can be used to describe compounds and adverse effects. We then explore how compound descriptors based on chemical structure or biological perturbation response can be used to predict safety-related endpoints, and how especially biological data can help us to better understand adverse effects mechanistically. Overall, the described applications demonstrate how large-scale biological information presents new opportunities to anticipate and understand the biological effects of compounds, and how this can support predictive toxicology and drug discovery projects.